首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Coevolutionary Fuzzy Attribute Order Reduction With Complete Attribute-Value Space Tree
【24h】

Coevolutionary Fuzzy Attribute Order Reduction With Complete Attribute-Value Space Tree

机译:使用完全属性值空间树减少共用模糊属性顺序

获取原文
获取原文并翻译 | 示例

摘要

Since big data sets are structurally complex, high-dimensional, and their attributes exhibit some redundant and irrelevant information, the selection, evaluation, and combination of those large-scale attributes pose huge challenges to traditional methods. Fuzzy rough sets have emerged as a powerful vehicle to deal with uncertain and fuzzy attributes in big data problems that involve a very large number of variables to be analyzed in a very short time. In order to further overcome the inefficiency of traditional algorithms in the uncertain and fuzzy big data, in this paper we present a new coevolutionary fuzzy attribute order reduction algorithm (CFAOR) based on a complete attribute-value space tree. A complete attribute-value space tree model of decision table is designed in the attribute space to adaptively prune and optimize the attribute order tree. The fuzzy similarity of multimodality attributes can be extracted to satisfy the needs of users with the better convergence speed and classification performance. Then, the decision rule sets generate a series of rule chains to form an efficient cascade attribute order reduction and classification with a rough entropy threshold. Finally, the performance of CFAOR is assessed with a set of benchmark problems that contain complex high dimensional datasets with noise. The experimental results demonstrate that CFAOR can achieve the higher average computational efficiency and classification accuracy, compared with the state-of-the-art methods. Furthermore, CFAOR is applied to extract different tissues surfaces of dynamical changing infant cerebral cortex and it achieves a satisfying consistency with those of medical experts, which shows its potential significance for the disorder prediction of infant cerebrum.
机译:由于大数据集是结构复杂的,高维的,并且它们的属性表现出一些冗余和无关的信息,选择,评估和那些大规模属性的选择,对传统方法构成巨大挑战。模糊粗糙集已成为一种强大的车辆,可以在大数据问题中处理不确定和模糊的属性,涉及在很短的时间内分析的大量变量。为了进一步克服传统算法在不确定和模糊的大数据中的效率下,在本文中,我们介绍了一种基于完整属性值空间树的新的共同面型模糊属性秩序算法(CFAor)。决策表的完整属性值 - 值空间树模型在属性空间中设计,以自适应地修剪和优化属性顺序树。可以提取多模性属性的模糊相似性以满足具有更好的收敛速度和分类性能的用户的需求。然后,决策规则集生成一系列规则链,以形成有效的级联属性顺序减少和分类,具有粗糙的熵阈值。最后,通过包含具有噪声的复杂高维数据集的一组基准问题来评估CFAOR的性能。实验结果表明,与最先进的方法相比,CFAOR可以达到更高的平均计算效率和分类精度。此外,将CFAOR应用于提取动态变化的婴儿脑皮质的不同组织表面,并实现了与医学专家的令人满意的一致性,这表明其对婴幼儿疾病预测的潜在意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号