首页> 外文期刊>Genetic programming and evolvable machines >Symbiotic coevolutionary genetic programming: a benchmarking study under large attribute spaces
【24h】

Symbiotic coevolutionary genetic programming: a benchmarking study under large attribute spaces

机译:共生共进化遗传规划:大属性空间下的基准研究

获取原文
获取原文并翻译 | 示例

摘要

Classification under large attribute spaces represents a dual learning problem in which attribute subspaces need to be identified at the same time as the classifier design is established. Embedded as opposed to filter or wrapper methodologies address both tasks simultaneously. The motivation for this work stems from the observation that team based approaches to Genetic Programming (GP) have the potential to design multiple classifiers per class—each with a potentially unique attribute subspace—without recourse to filter or wrapper style preprocessing steps. Specifically, competitive coevolution provides the basis for scaling the algorithm to data sets with large instance counts; whereas cooperative coevolution provides a framework for problem decomposition under a bid-based model for establishing program context. Symbiosis is used to separate the tasks of team/ ensemble composition from the design of specific team members. Team composition is specified in terms of a combinatorial search performed by a Genetic Algorithm (GA); whereas the properties of individual team members and therefore subspace identification is established under an independent GP population. Teaming implies that the members of the resulting ensemble of classifiers should have explicitly non-overlapping behaviour. Performance evaluation is conducted over data sets taken from the UCI repository with 649-102,660 attributes and 2-10 classes. The resulting teams identify attribute spaces 1-4 orders of magnitude smaller than under the original data set. Moreover, team members generally consist of less than 10 instructions; thus, small attribute subspaces are not being traded for opaque models.
机译:大属性空间下的分类表示一个双重学习问题,其中在建立分类器设计的同时需要标识属性子空间。与过滤器或包装器方法相反,嵌入式方法同时处理两个任务。开展这项工作的动机来自以下观察:基于团队的遗传编程(GP)方法有潜力在每个类中设计多个分类器(每个分类器具有潜在的唯一属性子空间),而无需求助于过滤器或包装样式的预处理步骤。具体而言,竞争性协同进化为将算法扩展到具有大量实例数的数据集提供了基础。而协作式协同进化为建立程序环境的基于出价的模型下的问题分解提供了框架。共生用于将团队/合奏组成的任务与特定团队成员的设计分开。团队组成是根据遗传算法(GA)执行的组合搜索指定的;而单个团队成员的属性以及因此的子空间识别是在独立的GP群体下建立的。分组意味着,结果分类器集合中的成员应具有明确的非重叠行为。性能评估是对来自UCI信息库的,具有649-102,660属性和2-10类的数据集进行的。结果小组确定的属性空间比原始数据集小1-4个数量级。此外,团队成员通常包含少于10条指令;因此,较小的属性子空间不会交换为不透明的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号