首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Cooperative Evolutionary Framework With Focused Search for Many-Objective Optimization
【24h】

Cooperative Evolutionary Framework With Focused Search for Many-Objective Optimization

机译:合作进化框架,重点搜索多目标优化

获取原文
获取原文并翻译 | 示例

摘要

When dealing with many-objective optimization problems, Pareto-based approaches suffer from the loss of selection pressure toward Pareto front. In this study, a general cooperative evolutionary framework with focused search is proposed to make Pareto-based approaches perform better for many-objective optimization problems. The proposed framework has two evolutionary populations, a focused evolutionary population and a Pareto-based evolutionary population, and these two populations work collaboratively. The focused evolutionary population focuses on searching for the corner solutions that are important for convergence and spread (focused search), guiding the Pareto-based evolutionary population to evolve toward the Pareto front, and promoting Pareto-based evolutionary population to spread along the Pareto front. Pareto-based evolutionary population aims to obtain the solutions with well convergence and diversity (global search), providing some undeveloped but potentially promising solutions to focused evolutionary population. As a general framework, any Pareto-based approaches can be adapted to the proposed framework. As a case study, four representative Pareto-based approaches are selected to instantiate the framework. Experimental results show that Pareto-based algorithms with a focused evolutionary population can be appropriate for many-objective optimization problems, and thus the proposed framework paves a new way to improve the performance of Pareto-based approaches for many-objective optimization problems.
机译:在处理多目标优化问题时,基于帕累托的方法遭受了对帕累托前线的选择压力的损失。在本研究中,提出了一种具有聚焦搜索的一般合作进化框架,以使基于帕累托的方法对许多客观的优化问题进行更好。拟议的框架有两个进化群体,一个重点的进化人口和基于帕累托的进化人口,这两个人口合作协同工作。重点的进化人口侧重于寻找对收敛和传播(重点搜索)重要的角落解决方案,引导基于帕累托的进化人口进化到帕累托前部,并促进基于帕累托的进化人口来沿着帕累托前进传播。基于帕累托的进化群体旨在获得具有良好收敛和多样性(全球搜索)的解决方案,为重点进化人口提供一些未开发但潜在有希望的解决方案。作为一般框架,任何基于帕累托的方法都可以适应所提出的框架。作为一个案例研究,选择了四种基于帕累托的方法来实例化框架。实验结果表明,基于帕累托的进化群体的算法可以适用于多目标优化问题,因此提出的框架铺平了一种新的方式来提高基于帕累托的方法对多目标优化问题的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号