首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Sparse Learning of Higher-Order Statistics for Communications and Sensing
【24h】

Sparse Learning of Higher-Order Statistics for Communications and Sensing

机译:对通信和感应的高阶统计数据稀疏学习

获取原文
获取原文并翻译 | 示例

摘要

Signal processing based higher-order statistics (HOS) has been acting as a potential important tool on variety of target identification and information sensing fields. While a concise or compact expression of HOS is needed to ease the burden of data acquisition and computational complexity, sparse representation of HOS could be the optimum solution to this problem. In this paper, we formulate the issue of sparse representation of HOS by categorizing them into three cases according to the discriminative sparsity: strictly sparse, structure-based sparse and structure-based compressible. The corresponding algorithms of sparse representation for the three types of HOS are designed individually. For strictly sparse HOS, we mainly address on how to build the linear relationship between one-dimensional time domain samples and high-dimensional HOS and reduce the computational complexity of equivalent sensing matrix. Autocorrelation and four-order statistic are taken as examples to illustrate proposed sparse decomposing method for structure-based sparse HOS by exploiting their intra-structure properties. The sparse representation of structure-based compressible HOS are approximated with a joint decomposing algorithm using eigenvalue and single-value decomposition approaches. In addition, we have integrate our proposed sparse representation of HOS into compressive sensing framework to verify the feasibility and performance of sparse representation solutions.
机译:基于信号处理的高阶统计(HOS)一直是在各种目标识别和信息传感领域的潜在重要工具。虽然需要一个简洁或紧凑的HOS的表达来缓解数据采集和计算复杂性的负担,但HOS的稀疏表示可能是对此问题的最佳解决方案。在本文中,我们根据歧视性稀疏性将它们分为三个案例,制定疏散稀疏表示的问题:严格稀疏,基于结构的稀疏和结构的可压缩。三种类型的HOS的稀疏表示的相应算法是单独设计的。对于严格稀疏的HOS,我们主要是关于如何构建一维时域样本和高维窦之间的线性关系,并降低等效感测矩阵的计算复杂性。以自相关和四阶统计数据作为示例,以说明通过利用其内部结构性能来说明基于结构的稀疏性HOS的提出的稀疏分解方法。基于结构的可压缩性HOS的稀疏表示近似使用使用特征值和单值分解方法的关节分解算法。此外,我们将我们提出的HOS稀疏表示集成到压缩传感框架中,以验证稀疏表示解决方案的可行性和性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号