首页> 中文期刊> 《计算机仿真》 >一种在源数据稀疏情况下的流形学习算法研究

一种在源数据稀疏情况下的流形学习算法研究

     

摘要

传统的流形学习算法能有效地学习出高维采样数据的低维嵌入坐标,但也存在一些不足,如不能处理稀疏的样本数据.针对这些缺点,提出了一种基于局部映射的直接求解线性嵌入算法(Solving Directly Linear Embedding,简称SDLE).通过假定低维流形的整体嵌入函数,将流形映射赋予局部光滑的约束,应用核方法将高维空间的坐标投影到特征空间,最后构造出在低维空间的全局坐标.SDLE算法解决了在源数据稀疏情况下的非线性维数约简问题,这是传统的流形学习算法没有解决的问题.通过实验说明了SDLE算法研究的有效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号