...
首页> 外文期刊>IEEE transactions on device and materials reliability >A Rapid Fatigue Test Method on Micro Structures for High-Cycle Fatigue
【24h】

A Rapid Fatigue Test Method on Micro Structures for High-Cycle Fatigue

机译:高循环疲劳微结构快速疲劳测试方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Here, a rapid fatigue test method for micro structure is proposed, where the test sample is excited at its resonant frequency by an external actuator. Due to the scaling effect, a micro cantilever beam has high resonant frequency, so the testing time can be greatly reduced. In addition, no complicated built-in micro actuator is needed; therefore, it is easy to fabricate the test sample. Single-crystal silicon (SCS) beams are fabricated to demonstrate the proposed method here with two types of beams. A notch is designed near the fixed end to have stress concentration effect. The input voltage of the piezoelectric patch is adjusted to excite the cantilever beams at its resonant frequency to have different amplitudes to find the corresponding fatigue life, where a laser Doppler vibrometer is used to monitor displacements of the cantilever beam to control the stress amplitude. Then, the stress–life (S/N) curve of the silicon beam can be obtained. It is found that the fatigue limit of the SCS beam is about 1.33 GPa, and it takes only about 5.2 h to test cycles at a resonant frequency of 72 kHz. Comparing with previous fatigue test methods with an external probe, testing cycles at a frequency of 20 Hz will need 1.58 years, which indicates that the proposed rapid fatigue test method is particularly suitable for high-cycle fatigue test of micro structure.
机译:在此,提出了一种用于微结构的快速疲劳测试方法,其中,通过外部执行器以其共振频率激发测试样品。由于缩放效应,微悬臂梁具有较高的谐振频率,因此可以大大减少测试时间。另外,不需要复杂的内置微型致动器。因此,容易制造测试样品。制作了单晶硅(SCS)光束以在这里用两种类型的光束演示所提出的方法。在固定端附近设计一个缺口,以产生应力集中效应。调节压电贴片的输入电压以激发其共振频率的悬臂梁,使其具有不同的振幅,以找到相应的疲劳寿命,其中使用激光多普勒振动计监测悬臂梁的位移以控制应力振幅。然后,可以获得硅梁的应力-寿命(S / N)曲线。发现SCS光束的疲劳极限约为1.33 GPa,在72 kHz的共振频率下测试周期仅需约5.2 h。与以前使用外部探针的疲劳测试方法相比,在20 Hz的频率下测试周期将需要1.58年,这表明所提出的快速疲劳测试方法特别适用于微结构的高周疲劳测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号