首页> 美国卫生研究院文献>Micromachines >Digital Micromirror Device (DMD)-Based High-Cycle Torsional Fatigue Testing Micromachine for 1D Nanomaterials
【2h】

Digital Micromirror Device (DMD)-Based High-Cycle Torsional Fatigue Testing Micromachine for 1D Nanomaterials

机译:基于数字微镜设备(DMD)的一维纳米材料高循环扭转疲劳试验微机

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fatigue behavior of nanomaterials could ultimately limit their applications in variable nano-devices and flexible nanoelectronics. However, very few existing nanoscale mechanical testing instruments were designed for dedicated fatigue experiments, especially for the challenging torsional cyclic loading. In this work, a novel high-cycle torsion straining micromachine, based on the digital micromirror device (DMD), has been developed for the torsional fatigue study on various one-dimensional (1D) nanostructures, such as metallic and semiconductor nanowires. Due to the small footprint of the DMD chip itself and its cable-remote controlling mechanisms, it can be further used for the desired in situ testing under high-resolution optical or electron microscopes (e.g., scanning electron microscope (SEM)), which allows real-time monitoring of the fatigue testing status and construction of useful structure-property relationships for the nanomaterials. We have then demonstrated its applications for testing nanowire samples with diameters about 100 nm and 500 nm, up to 1000 nm, and some of them experienced over hundreds of thousands of loading cycles before fatigue failure. Due to the commercial availability of the DMD and millions of micromirrors available on a single chip, this platform could offer a low-cost and high-throughput nanomechanical solution for the uncovered torsional fatigue behavior of various 1D nanostructures.
机译:纳米材料的疲劳行为最终可能会限制其在可变纳米器件和柔性纳米电子学中的应用。但是,很少有现有的纳米级机械测试仪器专门用于疲劳试验,特别是对于具有挑战性的扭转循环载荷。在这项工作中,已经开发了一种基于数字微镜器件(DMD)的新型高循环扭应变微机,用于对各种一维(1D)纳米结构(例如金属和半导体纳米线)进行扭转疲劳研究。由于DMD芯片本身的占地面积小以及其电缆远程控制机制,它可以进一步用于高分辨率光学或电子显微镜(例如,扫描电子显微镜(SEM))下的所需原位测试。实时监测疲劳测试状态并构建纳米材料的有用的结构-特性关系。然后,我们证明了其在测试直径约100 nm和500 nm至1000 nm的纳米线样品中的应用,其中一些样品在疲劳失效之前经历了数十万次的加载循环。由于DMD的商业可用性以及单个芯片上有数百万个微镜,该平台可以为各种一维纳米结构的未发现的扭转疲劳行为提供低成本和高通量的纳米机械解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号