首页> 外文期刊>IEEE transactions on dependable and secure computing >Real-Time Error Detection in Nonlinear Control Systems Using Machine Learning Assisted State-Space Encoding
【24h】

Real-Time Error Detection in Nonlinear Control Systems Using Machine Learning Assisted State-Space Encoding

机译:使用机器学习辅助状态空间编码的非线性控制系统中的实时错误检测

获取原文
获取原文并翻译 | 示例

摘要

Successful deployment of autonomous systems in a wide range of societal applications depends on error-free operation of the underlying signal processing and control functions. Real-time error detection in nonlinear systems has mostly relied on redundancy at the component or algorithmic level causing expensive area and power overheads. This paper describes a real-time error detection methodology for nonlinear control systems for detecting sensor and actuator degradations as well as malfunctions due to soft errors in the execution of the control algorithm on a digital processor. Our approach is based on creation of a redundant check state in such a way that its value can be computed from the current states of the system as well as from a history of prior observable state values and inputs (via machine learning algorithms). By checking for consistency between the two, errors are detected with low latency. The method is demonstrated on two test case simulations - an inverted pendulum balancing problem and a sliding mode controller driven brake-by-wire (BBW) system. In addition, hardware results from error injection experiments in an ARM core representation on an FPGA and artificial sensor degradations on a self-balancing robot prove the practical feasibility of implementation.
机译:在广泛的社会应用中成功部署自主系统取决于底层信号处理和控制功能的无差错操作。非线性系统中的实时错误检测主要依赖于组件或算法水平的冗余,导致昂贵的区域和电源开销。本文介绍了用于检测传感器和致动器劣化的非线性控制系统的实时错误检测方法以及由于在数字处理器上执行控制算法的软误差而导致的故障。我们的方法基于创建冗余检查状态,以这样的方式,即其值可以从系统的当前状态计算,以及从先前可观察状态值和输入的历史(通过机器学习算法)。通过检查两者之间的一致性,使用低延迟检测错误。该方法在两个测试案例模拟上进行了说明 - 倒摆率平衡问题和滑动模式控制器驱动的逐线(BBW)系统。此外,FPGA上的ARM核心表示中的错误注射实验的硬件和自平衡机器人的人工传感器降低证明了实现的实际可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号