首页> 外文期刊>IEEE transactions on dependable and secure computing >Efficient and Private Scoring of Decision Trees, Support Vector Machines and Logistic Regression Models Based on Pre-Computation
【24h】

Efficient and Private Scoring of Decision Trees, Support Vector Machines and Logistic Regression Models Based on Pre-Computation

机译:决策树的高效和私人评分,支持基于预算的矢量机器和逻辑回归模型

获取原文
获取原文并翻译 | 示例

摘要

Many data-driven personalized services require that private data of users is scored against a trained machine learning model. In this paper we propose a novel protocol for privacy-preserving classification of decision trees, a popular machine learning model in these scenarios. Our solutions is composed out of building blocks, namely a secure comparison protocol, a protocol for obliviously selecting inputs, and a protocol for multiplication. By combining some of the building blocks for our decision tree classification protocol, we also improve previously proposed solutions for classification of support vector machines and logistic regression models. Our protocols are information theoretically secure and, unlike previously proposed solutions, do not require modular exponentiations. We show that our protocols for privacy-preserving classification lead to more efficient results from the point of view of computational and communication complexities. We present accuracy and runtime results for seven classification benchmark datasets from the UCI repository.
机译:许多数据驱动的个性化服务要求用户对受过培训的机器学习模型进行评分的私人数据。在本文中,我们提出了一种新颖的,用于在这些场景中的一个流行的机器学习模型的隐私保留分类。我们的解决方案由构建块组成,即安全的比较协议,一种信令选择输入的协议,以及用于乘法的协议。通过组合我们决策树分类协议的一些构建块,我们还可以改进先前提出的支持向量机和逻辑回归模型的分类解决方案。我们的协议理论上是理论上的信息,与先前提出的解决方案不同,不需要模块化指数。我们表明,我们的隐私保留分类协议导致从计算和通信复杂性的角度来看的更有效的结果。我们从UCI存储库提供七个分类基准数据集的准确性和运行时结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号