首页> 外文期刊>IEEE transactions on dependable and secure computing >Efficient and Private Scoring of Decision Trees, Support Vector Machines and Logistic Regression Models Based on Pre-Computation
【24h】

Efficient and Private Scoring of Decision Trees, Support Vector Machines and Logistic Regression Models Based on Pre-Computation

机译:基于预计算的决策树,支持向量机和Logistic回归模型的高效和私有评分

获取原文
获取原文并翻译 | 示例

摘要

Many data-driven personalized services require that private data of users is scored against a trained machine learning model. In this paper we propose a novel protocol for privacy-preserving classification of decision trees, a popular machine learning model in these scenarios. Our solutions is composed out of building blocks, namely a secure comparison protocol, a protocol for obliviously selecting inputs, and a protocol for multiplication. By combining some of the building blocks for our decision tree classification protocol, we also improve previously proposed solutions for classification of support vector machines and logistic regression models. Our protocols are information theoretically secure and, unlike previously proposed solutions, do not require modular exponentiations. We show that our protocols for privacy-preserving classification lead to more efficient results from the point of view of computational and communication complexities. We present accuracy and runtime results for seven classification benchmark datasets from the UCI repository.
机译:许多数据驱动的个性化服务要求根据训练有素的机器学习模型对用户的私人数据进行评分。在本文中,我们提出了一种用于决策树的隐私保护分类的新颖协议,这是在这些情况下的一种流行的机器学习模型。我们的解决方案由构建模块组成,即安全比较协议,用于明显选择输入的协议和用于乘法的协议。通过为决策树分类协议组合一些构件,我们还改进了先前提出的支持向量机和逻辑回归模型分类的解决方案。我们的协议从理论上讲是安全的信息,并且与以前提出的解决方案不同,它不需要模块化的幂运算。我们表明,从计算和通信复杂性的角度来看,我们用于保护隐私的分类的协议可导致更有效的结果。我们提供了UCI存储库中七个分类基准数据集的准确性和运行时结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号