首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >Privacy-Preserving Multi-Class Support Vector Machine for Outsourcing the Data Classification in Cloud
【24h】

Privacy-Preserving Multi-Class Support Vector Machine for Outsourcing the Data Classification in Cloud

机译:隐私保护的多类别支持向量机,用于外包云中的数据分类

获取原文
获取原文并翻译 | 示例

摘要

Emerging cloud computing infrastructure replaces traditional outsourcing techniques and provides flexible services to clients at different locations via Internet. This leads to the requirement for data classification to be performed by potentially untrusted servers in the cloud. Within this context, classifier built by the server can be utilized by clients in order to classify their own data samples over the cloud. In this paper, we study a privacy-preserving (PP) data classification technique where the server is unable to learn any knowledge about clients’ input data samples while the server side classifier is also kept secret from the clients during the classification process. More specifically, to the best of our knowledge, we propose the first known client-server data classification protocol using support vector machine. The proposed protocol performs PP classification for both two-class and multi-class problems. The protocol exploits properties of Pailler homomorphic encryption and secure two-party computation. At the core of our protocol lies an efficient, novel protocol for securely obtaining the sign of Pailler encrypted numbers.
机译:新兴的云计算基础架构取代了传统的外包技术,并通过Internet为不同位置的客户提供灵活的服务。这导致需要由云中可能不受信任的服务器执行数据分类。在这种情况下,客户端可以利用服务器构建的分类器,以便通过云对自己的数据样本进行分类。在本文中,我们研究了一种隐私保护(PP)数据分类技术,其中服务器无法学习有关客户端输入数据样本的任何知识,而服务器端分类器也在分类过程中对客户端保持秘密。更具体地说,据我们所知,我们提出了第一个使用支持向量机的已知客户端-服务器数据分类协议。所提出的协议对两类和多类问题都执行PP分类。该协议利用了Pailler同态加密的属性和安全的两方计算。我们协议的核心是有效,新颖的协议,用于安全获取Pailler加密数字的符号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号