首页> 外文期刊>Neurocomputing >Hierarchical multi-class classification in multimodal spacecraft data using DNN and weighted support vector machine
【24h】

Hierarchical multi-class classification in multimodal spacecraft data using DNN and weighted support vector machine

机译:使用DNN和加权支持向量机的多模式航天器数据分层多类别分类

获取原文
获取原文并翻译 | 示例

摘要

Prognostics and health management (PHM) is widely applied to assess the reliability, safety and operation of systems particularly in spacecraft systems. However, spacecraft systems are very complex with intangibility and uncertainty, and it is difficult to model and analyze the complex degradation process, and thus there is no single prognostic method for solving the critical and complicated problem. This paper presents a novel hierarchical multi-class classification method using deep neural networks (DNN) and weighted support vector machine (WSVM) in order to achieve a highly discriminative feature representation for classifying the multimodal spacecraft data. First, the stack auto-Encoder (SAE) or deep belief network is adopted to initialize the initial weights and offsets of the hierarchical multi-layer neural network in order to reduce the dimension of the original multimodal data, and the optimal depth of multi-layer neural network and the discriminative features are also obtained. Second, in order to make the high dimensional spacecraft data more separable, the initialization parameters are online monitored by using a gradient descent method. Finally, a flexible hierarchical estimation method of a multi-class weighted support vector machines (MCWSVM) is applied to classify the multimodal spacecraft data. The performance of the proposed work is evaluated by the classification accuracy, sensitivity, specificity and execution time, respectively. The results demonstrate that the proposed DNN with MCWSVM is efficient in terms of better classification accuracy at a lesser execution time when compared to K-nearest neighbors (KNN), SVM and naive Bayes method (NBM). (C) 2017 Elsevier B.V. All rights reserved.
机译:预测和健康管理(PHM)被广泛应用于评估系统的可靠性,安全性和运行,尤其是在航天器系统中。但是,航天器系统非常复杂,具有无形性和不确定性,难以对复杂的退化过程进行建模和分析,因此,没有单一的预测方法可以解决关键和复杂的问题。本文提出了一种使用深度神经网络(DNN)和加权支持向量机(WSVM)的新型分层多类分类方法,以实现对多模式航天器数据进行分类的高度区分性特征表示。首先,采用堆栈自动编码器(SAE)或深度置信网络来初始化分层多层神经网络的初始权重和偏移量,以减小原始多模态数据的维数和最佳还获得了层神经网络和判别特征。其次,为了使高维航天器数据更可分离,可使用梯度下降法在线监测初始化参数。最后,采用多类加权支持向量机(MCWSVM)的灵活的层次估计方法对多模式航天器数据进行分类。拟议工作的绩效分别通过分类准确性,敏感性,特异性和执行时间进行评估。结果表明,与K近邻算法(KNN),SVM和朴素贝叶斯方法(NBM)相比,拟议的带有MCWSVM的DNN在更短的执行时间上具有更好的分类精度,是有效的。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第11期|55-65|共11页
  • 作者单位

    Beihang Univ, Sch Aeronaut Sci & Engn, Fundamental Sci Ergon & Environm Control Lab, Beijing, Peoples R China;

    Beihang Univ, Sch Aeronaut Sci & Engn, Fundamental Sci Ergon & Environm Control Lab, Beijing, Peoples R China;

    Beihang Univ, Sch Aeronaut Sci & Engn, Fundamental Sci Ergon & Environm Control Lab, Beijing, Peoples R China;

    Beihang Univ, Sch Aeronaut Sci & Engn, Fundamental Sci Ergon & Environm Control Lab, Beijing, Peoples R China;

    Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Prognostics and health management (PHM); Deep neural network (DNN); Multi-modal spacecraft data; Weighted support vector machine (WSVM); Deep belief network;

    机译:预测与健康管理(PHM);深度神经网络(DNN);多模式航天器数据;加权支持向量机(WSVM);深度信念网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号