首页> 外文期刊>IEEE transactions on dependable and secure computing >LARGen: Automatic Signature Generation for Malwares Using Latent Dirichlet Allocation
【24h】

LARGen: Automatic Signature Generation for Malwares Using Latent Dirichlet Allocation

机译: LARGen :使用潜在狄利克雷分配为恶意软件自动生成签名

获取原文
获取原文并翻译 | 示例

摘要

As the quantity and complexity of network threats grow, Intrusion Detection Systems (IDSs) have become critical for securing networks. Achieving computer network intrusion detection with these IDSs requires high-level information technology and security expertise because malicious traffic has to be rigorously analyzed and the appropriate IDS rules written to effectively detect vulnerabilities that may potentially be exploited. However, incorrect IDS rules may produce numerous false positives, thereby degrading the performance of the IDS, and even worse, paralyzing the network. In this paper, we present a novel approach that exploits the Latent Dirichle Allocation (LDA) algorithm to generate IDS rules. Our proposed method, callednLnDA-basednAnutomaticnRnulenGenneration (nLARGenn), automatically performs an analysis of the malicious traffic and extracts the appropriate attack signatures that will be used for IDS rules.nLARGennfirst extracts multiple signature strings embedded in network flows. Then, the flows are classified based on the extracted signature strings, and key content strings for malicious traffic are identified through the LDA inferential topic model. Those key content strings are the core of an IDS rule that can detect malicious traffic. We study the effectiveness of LDA in the context of network attack signature generation via extensive experiments with real network trace data, consisting of both benign and malicious traffic. Experimental results confirm that threat rules generated fromnLARGennaccurately detect every cyber attack with high accuracy.
机译:随着网络威胁的数量和复杂性的增长,入侵检测系统(IDS)已成为保护网络安全的关键。使用这些IDS实现计算机网络入侵检测需要高级信息技术和安全专业知识,因为必须严格分析恶意流量,并编写适当的IDS规则以有效检测可能被利用的漏洞。但是,错误的IDS规则可能会产生大量误报,从而降低IDS的性能,甚至更糟的是使网络瘫痪。在本文中,我们提出了一种新颖的方法,该方法利用潜在的狄更斯分配(LDA)算法来生成IDS规则。我们提出的方法称为n L < / bold>基于nDA的n A nutomaticn R < / bold> nulen Gen 粗体> neration(n LARGen n),自动分析恶意流量并提取将用于IDS规则的适当攻击特征。n LARGen nfirst提取嵌入在网络流中的多个签名字符串。然后,基于提取的签名字符串对流进行分类,并通过LDA推理主题模型识别恶意流量的关键内容字符串。这些关键内容字符串是可检测恶意流量的IDS规则的核心。我们通过使用真实的网络跟踪数据(包括良性和恶意流量)进行广泛的实验,研究了LDA在网络攻击签名生成中的有效性。实验结果证实了从n LARGen 可以准确地检测每一次网络攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号