首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Optimality and scalability study of existing placement algorithms
【24h】

Optimality and scalability study of existing placement algorithms

机译:现有布局算法的最优性和可扩展性研究

获取原文
获取原文并翻译 | 示例

摘要

Placement is an important step in the overall IC design process in deep submicron technologies, as it defines the on-chip interconnects which have become the bottleneck in determining circuit performance. The rapidly increasing design complexity, combined with the demand for the capability of handling nearly flattened designs for physical hierarchy generation, poses significant challenges to existing placement algorithms. There are very few studies dedicated to understanding the optimality (i.e., the comparison of the solution of an algorithm to the optimal solution) and scalability (i.e., the analysis of the degradation of the performance of an algorithm as the input size of the problem increases) of placement algorithms, due to the limited sizes of existing benchmarks and limited knowledge of optimal solutions. The contribution of this work includes three parts. 1) We implemented an algorithm [Placement Examples with Known Optimal (PEKO) algorithm] for generating synthetic benchmarks that have known optimal wirelengths and can match any given net degree distribution profile. 2) Using benchmarks of 10 k to 2 M placeable modules with known optimal solutions, we studied the optimality and scalability of four state-of-the-art placers, Dragon (Wang et al., 2000), Capo (Caldwell et al., 2000), mPL (Chan et al., 2000), and mPG (Chang et al., 2002) from academia, and a leading edge industrial placer, QPlace (Cadence 1999) from Cadence. For the first time our study reveals the gap between the results produced by these tools versus true optimal solutions. The wirelengths produced by these tools are 1.59 to 2.40 times the optimal in the worst cases, and are 1.43 to 2.12 times the optimal on average. As for scalability, the average solution quality of each tool deteriorates by an additional 9% to 17% when the problem size increases by a factor of ten. These results indicate significant room for improvement in existing placement algorithms. 3) We studied the impact of nonlocal nets on the quality of the placers by extending the PEKO algorithm (PEKU algorithm) to generate synthetic placement benchmarks with a known upper bound of the optimal wirelength. For these benchmarks, the wirelengths produced by these tools are 1.75 to 2.18 times the wirelength upper bound in the worst case, and are 1.62 to 2.07 times the wirelength upper bound on average. Moreover, in our study we found that the effectiveness of the algorithms varies for circuits with different characteristics.
机译:在深亚微米技术中,布局是整个IC设计过程中的重要一步,因为它定义了片上互连,这些已成为确定电路性能的瓶颈。快速增加的设计复杂性,以及对处理几乎扁平化的设计以进行物理层次生成的能力的需求,对现有的布局算法提出了重大挑战。很少有研究致力于了解最优性(即,算法的解与最优解的比较)和可伸缩性(即,随着问题的输入大小的增加而对算法性能下降的分析) )的展示位置算法,这是由于现有基准测试的大小有限以及对最佳解决方案的了解有限。这项工作的贡献包括三个部分。 1)我们实现了一种算法[已知最佳布局示例(PEKO)算法],以生成具有已知最佳线长并且可以匹配任何给定净度分布轮廓的综合基准。 2)使用已知解决方案的10 k至2 M可放置模块的基准测试,我们研究了四种最先进的放置器,Dragon(Wang等,2000),Capo(Caldwell等,2000)。 (2000年),mPL(Chan等人,2000年)和mPG(Chang等人,2002年),以及来自Cadence的领先的工业铺装商QPlace(Cadence,1999年)。我们的研究首次揭示了这些工具所产生的结果与真正的最佳解决方案之间的差距。这些工具产生的线长在最坏的情况下为最佳的1.59至2.40倍,平均为最佳的1.43至2.12倍。至于可扩展性,当问题的大小增加十倍时,每个工具的平均解决方案质量将另外降低9%到17%。这些结果表明现有放置算法有很大的改进空间。 3)我们通过扩展PEKO算法(PEKU算法)来生成具有已知最佳线长上限的合成放置基准,从而研究了非本地网络对放置器质量的影响。对于这些基准,在最坏的情况下,这些工具产生的线长是线长上限的1.75到2.18倍,平均是线长上限的1.62到2.07倍。此外,在我们的研究中,我们发现算法的有效性对于具有不同特性的电路是不同的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号