首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Ant Colony Optimizations for Resource- and Timing-Constrained Operation Scheduling
【24h】

Ant Colony Optimizations for Resource- and Timing-Constrained Operation Scheduling

机译:蚁群算法在资源和时间约束下的调度

获取原文
获取原文并翻译 | 示例

摘要

Operation scheduling (OS) is a fundamental problem in mapping an application to a computational device. It takes a behavioral application specification and produces a schedule to minimize either the completion time or the computing resources required to meet a given deadline. The OS problem is NP-hard; thus, effective heuristic methods are necessary to provide qualitative solutions. We present novel OS algorithms using the ant colony optimization approach for both timing-constrained scheduling (TCS) and resource-constrained scheduling (RCS) problems. The algorithms use a unique hybrid approach by combining the MAX-MIN ant system metaheuristic with traditional scheduling heuristics. We compiled a comprehensive testing benchmark set from real-world applications in order to verify the effectiveness and efficiency of our proposed algorithms. For TCS, our algorithm achieves better results compared with force-directed scheduling on almost all the testing cases with a maximum 19.5% reduction of the number of resources. For RCS, our algorithm outperforms a number of different list-scheduling heuristics with better stability and generates better results with up to 14.7% improvement. Our algorithms outperform the simulated annealing method for both scheduling problems in terms of quality, computing time, and stability
机译:操作调度(OS)是将应用程序映射到计算设备的基本问题。它采用行为应用程序规范并制定时间表以最大程度地减少完成时间或满足给定期限所需的计算资源。操作系统问题很难解决。因此,需要有效的启发式方法来提供定性解决方案。我们提出了使用蚁群优化方法的新颖OS算法,用于时序约束调度(TCS)和资源约束调度(RCS)问题。该算法通过将MAX-MIN蚂蚁系统元启发式算法与传统调度启发式算法结合使用独特的混合方法。为了验证所提出算法的有效性和效率,我们从实际应用程序中收集了全面的测试基准。对于TCS,在几乎所有测试案例中,与强制控制调度相比,我们的算法均能获得更好的结果,并且最多可减少19.5%的资源数量。对于RCS,我们的算法以更好的稳定性胜过许多不同的列表调度试探法,并产生了更好的结果,并提高了14.7%。对于质量,计算时间和稳定性方面的调度问题,我们的算法均优于模拟退火方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号