首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Discretization of Macroscopic Transport Equations on Non-Cartesian Coordinate Systems
【24h】

Discretization of Macroscopic Transport Equations on Non-Cartesian Coordinate Systems

机译:非笛卡尔坐标系上宏观输运方程的离散化

获取原文
获取原文并翻译 | 示例

摘要

We discuss discretization schemes for the Poisson equation, the isothermal drift-diffusion equations, and higher order moment equations derived from the Boltzmann transport equation for general coordinate systems. We briefly summarize the method of dimension reduction when the problem does not depend on one coordinate. Discretization schemes for dimension-reduced coordinate systems are introduced, which provide curvilinear coordinate systems. In addition to the reduction of the dimensionality, another benefit of these curved coordinate systems is that the domain approximation is more accurate, and therefore, the mesh point density can be kept smaller compared to the original problem. We obtain a discretization scheme for the isothermal drift-diffusion equation in closed from. For higher order transport equations, we use the approximation method of optimum artificial diffusivity and generalize it for non-Cartesian coordinate systems. For the special case of cylindrical coordinates, we can show that it is not necessary to introduce special discretization schemes apart from the standard Scharfetter–Gummel scheme.
机译:我们讨论了泊松方程,等温漂移-扩散方程和从玻尔兹曼输运方程导出的用于一般坐标系的高阶矩方程的离散化方案。我们简要总结了当问题不依赖于一个坐标时的降维方法。介绍了用于降维坐标系的离散化方案,该方案提供了曲线坐标系。除了减少维数外,这些曲线坐标系的另一个好处是,域逼近更为精确,因此与原始问题相比,网格点密度可以保持较小。我们从中得到了等温漂移扩散方程的离散化方案。对于高阶输运方程,我们使用最佳人工扩散率的近似方法,并将其推广到非笛卡尔坐标系。对于圆柱坐标的特殊情况,我们可以证明,除了标准的Scharfetter-Gummel方案外,没有必要引入特殊的离散化方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号