首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Why Quasi-Monte Carlo is Better Than Monte Carlo or Latin Hypercube Sampling for Statistical Circuit Analysis
【24h】

Why Quasi-Monte Carlo is Better Than Monte Carlo or Latin Hypercube Sampling for Statistical Circuit Analysis

机译:为什么准蒙特卡洛比蒙特卡洛或拉丁超立方抽样在统计电路分析方面要好

获取原文
获取原文并翻译 | 示例

摘要

At the nanoscale, no circuit parameters are truly deterministic; most quantities of practical interest present themselves as probability distributions. Thus, Monte Carlo techniques comprise the strategy of choice for statistical circuit analysis. There are many challenges in applying these techniques efficiently: circuit size, nonlinearity, simulation time, and required accuracy often conspire to make Monte Carlo analysis expensive and slow. Are we—the integrated circuit community—alone in facing such problems? As it turns out, the answer is “no.” Problems in computational finance share many of these characteristics: high dimensionality, profound nonlinearity, stringent accuracy requirements, and expensive sample evaluation. We perform a detailed experimental study of how one celebrated technique from that domain—quasi-Monte Carlo (QMC) simulation—can be adapted effectively for fast statistical circuit analysis. In contrast to traditional pseudorandom Monte Carlo sampling, QMC uses a (shorter) sequence of deterministically chosen sample points. We perform rigorous comparisons with both Monte Carlo and Latin hypercube sampling across a set of digital and analog circuits, in 90 and 45 nm technologies, varying in size from 30 to 400 devices. We consistently see superior performance from QMC, giving 2 $,times$ to 8$,times$ speedup over conventional Monte Carlo for roughly 1% accuracy levels. We present rigorous theoretical arguments that support and explain this superior performance of QMC. The arguments also reveal insights regarding the (low) latent dimensionality of these circuit problems; for example, we observe that over half of the variance in our test circuits is from unidimensional behavior. This analysis provides quantitative support for recent enthusiasm in dimensionality reducti-n-non of circuit problems.
机译:在纳米级,没有电路参数可以真正确定。大多数实际兴趣量以概率分布的形式呈现。因此,蒙特卡洛技术构成了统计电路分析的选择策略。有效地应用这些技术存在许多挑战:电路尺寸,非线性,仿真时间和所需的精度常常共同导致蒙特卡洛分析昂贵而缓慢。我们(集成电路界)是否独自面对这些问题?事实证明,答案是“否”。计算财务方面的问题具有许多这些特征:高维度,深层的非线性,严格的精度要求以及昂贵的样本评估。我们进行了详细的实验研究,以研究如何有效地应用该领域的一种著名技术-准蒙特卡罗(QMC)仿真,以进行快速统计电路分析。与传统的伪随机蒙特卡洛采样相反,QMC使用(较短)确定性选择的采样点序列。我们对90和45 nm技术中的一组数字和模拟电路的蒙特卡洛和拉丁超立方体采样进行了严格的比较,尺寸从30到400器件不等。我们始终看到QMC的卓越性能,与传统的蒙特卡洛相比,速度提高了2美元乘以8美元,达到了大约1%的准确度。我们提出严格的理论论据,以支持和解释QMC的这一卓越性能。这些论点还揭示了关于这些电路问题的(低)潜在维数的见解。例如,我们观察到测试电路中一半以上的方差来自一维行为。该分析为最近对减少电路尺寸降维的热情提供了定量支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号