首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Quadratic Approximations for the Isochrons of Oscillators: A General Theory, Advanced Numerical Methods, and Accurate Phase Computations
【24h】

Quadratic Approximations for the Isochrons of Oscillators: A General Theory, Advanced Numerical Methods, and Accurate Phase Computations

机译:振荡器等时的二次逼近:一般理论,先进的数值方法和精确的相位计算

获取原文
获取原文并翻译 | 示例

摘要

The notion of isochrons for oscillators, introduced by Winfree and thereon heavily utilized in mathematical biology, were instrumental in introducing a notion of generalized phase and form the basis for oscillator perturbation analyses. Computing isochrons is a hard problem, existing brute-force methods incurring exponential complexity. In this paper, we present a precise and carefully developed theory and numerical techniques for computing local but quadratic approximations for isochrons. Previous work offers the techniques needed for computing only local linear approximations. Our treatment is general and applicable to oscillators with large dimension. We present examples for isochron computations, verify our results against exact calculations in a simple analytically calculable case, test our methods on complex oscillators, and show how quadratic approximations of isochrons can be used in formulating accurate, novel phase computation schemes and finally allude to second-order accurate compact phase macromodels. Oscillator studies seem to have progressed independently in electronics and biology. Even though analyses in electronics did not make use of the notion of isochrons, similar models and methods, expressed in totally different terminologies, have been developed in both disciplines. In this paper, we also reveal the connection between oscillator analysis work in these two seemingly disparate disciplines.
机译:由Winfree引入并在数学生物学中大量使用的振荡器的等时线概念有助于引入广义相位的概念,并构成了振荡器微扰分析的基础。计算等时线是一个难题,现有的蛮力方法会导致指数复杂性。在本文中,我们提出了一种精确且经过精心开发的理论和数值技术,用于计算等时线的局部但二次近似。先前的工作提供了仅计算局部线性逼近所需的技术。我们的处理是通用的,适用于大尺寸的振荡器。我们提供了等时同步计算的示例,在一个简单的可分析计算的情况下针对精确计算验证了我们的结果,在复杂振荡器上测试了我们的方法,并展示了等时同步的二次逼近如何可用于制定精确,新颖的相位计算方案并最终暗示了阶精确紧凑相位宏模型。振荡器研究似乎在电子学和生物学领域独立发展。尽管电子学中的分析没有使用等时的概念,但在这两个学科中都已经开发出了用完全不同的术语表达的相似模型和方法。在本文中,我们还揭示了这两个看似完全不同的学科中的振荡器分析工作之间的联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号