首页> 美国卫生研究院文献>other >Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model
【2h】

Computational efficiency of numerical approximations of tangent moduli for finite element implementation of a fiber-reinforced hyperelastic material model

机译:纤维增强超弹性材料模型有限元实现的切线模数值近似计算效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we evaluated computational efficiency of finite element (FE) simulations when a numerical approximation method was used to obtain the tangent moduli. A fiber-reinforced hyperelastic material model for nearly incompressible soft tissues was implemented for 3D solid elements using both the approximation method and the closed-form analytical method, and validated by comparing the components of the tangent modulus tensor (also referred to as the material Jacobian) between the two methods. The computational efficiency of the approximation method was evaluated with different perturbation parameters and approximation schemes, and quantified by the number of iteration steps and CPU time required to complete these simulations. From the simulation results, it can be seen that the overall accuracy of the approximation method is improved by adopting the central difference approximation scheme compared to the forward Euler approximation scheme. For small-scale simulations with about 10,000 DOFs, the approximation schemes could reduce the CPU time substantially compared to the closed-form solution, due to the fact that fewer calculation steps are needed at each integration point. However, for a large-scale simulation with about 300,000 DOFs, the advantages of the approximation schemes diminish because the factorization of the stiffness matrix will dominate the solution time. Overall, as it is material model independent, the approximation method simplifies the FE implementation of a complex constitutive model with comparable accuracy and computational efficiency to the closed-form solution, which makes it attractive in FE simulations with complex material models.
机译:在这项研究中,当使用数值逼近方法获得切线模量时,我们评估了有限元(FE)仿真的计算效率。使用逼近方法和闭合形式分析方法,针对3D实体元素,针对几乎不可压缩的软组织建立了纤维增强的超弹性材料模型,并通过比较切线模量张量的分量(也称为材料雅可比矩阵)进行了验证。 )两种方法之间。使用不同的扰动参数和近似方案评估了近似方法的计算效率,并根据完成这些模拟所需的迭代步骤数和CPU时间进行了量化。从仿真结果可以看出,与正向欧拉逼近方案相比,采用中心差逼近方案可以提高逼近方法的整体精度。对于具有约10,000个自由度的小规模仿真,由于每个积分点所需的计算步骤较少,因此与闭式解决方案相比,该近似方案可以显着减少CPU时间。但是,对于具有约300,000个自由度的大规模仿真,由于刚度矩阵的因式分解将主导求解时间,因此近似方案的优势会减弱。总体而言,由于它与材料模型无关,因此近似方法简化了复杂本构模型的有限元实现,其精确度和计算效率与封闭形式的解决方案相当,这使其在具有复杂材料模型的有限元模拟中具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号