首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Integrated Fluidic-Chip Co-Design Methodology for Digital Microfluidic Biochips
【24h】

Integrated Fluidic-Chip Co-Design Methodology for Digital Microfluidic Biochips

机译:用于数字微流控生物芯片的集成流控芯片协同设计方法

获取原文
获取原文并翻译 | 示例

摘要

Recently, digital microfluidic biochips (DMFBs) have revolutionized many biochemical laboratory procedures and received much attention due to their many advantages, such as high throughput, automatic control, and low cost. To meet the challenges of increasing design complexity, computer-aided-design (CAD) tools have been used to build DMFBs efficiently. Current CAD tools generally conduct a two-stage based design flow of fluidic-level synthesis followed by chip-level design to optimize fluidic behaviors and chip architecture separately. Nevertheless, existing fluidic-chip design gap will become even wider with a rapid escalation in the number of assay operations incorporated into a single DMFB. As more and more large-scale assay protocols are delivered in the current emerging marketplace, this problem may potentially restrict the effectiveness and feasibility of the entire DMFB realization and thus needs to be solved quickly. In this paper, we propose the first fluidic-chip co-design methodology for DMFBs to effectively bridge the fluidic-chip design gap. Our work provides a comprehensive integration throughout fluidic-operation scheduling, chip layout generation, control pin assignment, and wiring solution to achieve higher design performance and feasibility. Experimental results show the effectiveness, robustness, and scalability of our co-design methodology on a set of real-life assay applications.
机译:近年来,数字微流控生物芯片(DMFB)革新了许多生化实验室程序,并因其许多优点(如高通量,自动控制和低成本)而备受关注。为了应对不断增加的设计复杂性的挑战,已使用计算机辅助设计(CAD)工具来高效地构建DMFB。当前的CAD工具通常进行基于两阶段的流体级合成设计流程,然后进行芯片级设计以分别优化流体行为和芯片架构。然而,随着单个DMFB中包含的测定操作数量的快速增加,现有的流体芯片设计差距将变得更大。随着当前新兴市场中越来越多的大规模化验协议的交付,该问题可能潜在地限制了整个DMFB实现的有效性和可行性,因此需要迅速解决。在本文中,我们提出了用于DMFB的第一种流体芯片协同设计方法,以有效地弥合流体芯片设计差距。我们的工作在流体操作调度,芯片布局生成,控制引脚分配和布线解决方案之间提供了全面的集成,以实现更高的设计性能和可行性。实验结果表明,我们的协同设计方法论在一组现实生活中的分析应用中具有有效性,鲁棒性和可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号