首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Design and Optimization of a Cyberphysical Digital-Microfluidic Biochip for the Polymerase Chain Reaction
【24h】

Design and Optimization of a Cyberphysical Digital-Microfluidic Biochip for the Polymerase Chain Reaction

机译:用于聚合酶链反应的电子物理数字微流控生物芯片的设计和优化

获取原文
获取原文并翻译 | 示例

摘要

The amount of DNA strands available in a biological sample is a major limitation for many genomic bioanalyses. To amplify the traces of DNA strands, polymerase chain reaction (PCR) is widely used for conducting subsequent experiments. Compared to conventional instruments and analyzers, the execution of PCR on a digital microfluidic biochip (DMFB) can achieve short time-to-results, low reagent consumption, rapid heating/cooling rates, and high integration of multiple processing modules. However, the PCR biochip design methods in the literature are oblivious to the inherent randomness and complexity of bioanalyses, and they do not consider the interference among the neighboring devices and the cost of droplet transportation. We present an integrated design solution to optimize the complete PCR procedure, including: 1) DNA amplification and termination control; 2) resource placement that satisfies proximity constraints; and 3) droplet transportation. Based on the sensor feedback data, a statistical model is developed to optimize and control the DNA amplification sequence in real-time on a cyberphysical biochip. Next, we present a geometric algorithm for avoiding device interference and for reducing droplet routing cost. A novel optical sensing system is deployed based on the physical visibility of droplets. Simulation results for three laboratory protocols demonstrate that the proposed design method results in a compact layout and produces an execution sequence for efficient control of PCR operations on a cyberphysical DMFB.
机译:生物样品中可用的DNA链数量是许多基因组生物分析的主要限制。为了扩增DNA链的痕迹,聚合酶链反应(PCR)被广泛用于进行后续实验。与传统的仪器和分析仪相比,在数字微流生物芯片(DMFB)上执行PCR可以缩短结果时间,降低试剂消耗,提高加热/冷却速率并实现多个处理模块的高度集成。但是,文献中的PCR生物芯片设计方法没有考虑生物分析的固有随机性和复杂性,并且没有考虑相邻设备之间的干扰以及液滴运输的成本。我们提出了一种集成设计解决方案来优化完整的PCR程序,包括:1)DNA扩增和终止控制; 2)满足邻近性约束的资源放置; 3)液滴运输。基于传感器反馈数据,开发了统计模型,以在网络物理生物芯片上实时优化和控制DNA扩增序列。接下来,我们提出了一种几何算法,可避免设备干扰并降低液滴的路由成本。基于液滴的物理可见性来部署新颖的光学感测系统。三种实验室协议的仿真结果表明,所提出的设计方法可实现紧凑的布局,并生成执行序列,以有效控制电子物理DMFB上的PCR操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号