首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Learning-Based Power/Performance Optimization for Many-Core Systems With Extended-Range Voltage/Frequency Scaling
【24h】

Learning-Based Power/Performance Optimization for Many-Core Systems With Extended-Range Voltage/Frequency Scaling

机译:具有扩展范围电压/频率缩放功能的多核系统的基于学习的功率/性能优化

获取原文
获取原文并翻译 | 示例

摘要

Near-threshold computing has emerged as a promising solution to significantly increase the energy efficiency of next-generation multicore systems. This paper evaluates and analyzes the behavior of dynamic voltage and frequency scaling for multicore systems operating under extended range: including near-threshold, nominal, and turbo modes. We adapt the model selection technique from machine learning to determine the relationship between performance and power. The theoretical results show that the resulting models satisfy convexity, which efficiently determines the optimal voltage/frequency operating points for: 1) minimizing energy consumption under throughput constraints or 2) maximizing throughput under a given power budget. We validate our models on FinFET-based chip-multiprocessors. Considering process variations (PVs), experimental results show that at 30% PV levels, our proposed method: 1) reduces energy consumption by 31.09% at iso-performance condition and 2) increases throughput by 11.46% at iso-power when compared with variation-agnostic nominal case.
机译:近阈值计算已成为一种有希望的解决方案,可以显着提高下一代多核系统的能源效率。本文评估并分析了在扩展范围内工作的多核系统的动态电压和频率缩放行为:包括接近阈值,标称和turbo模式。我们采用机器学习中的模型选择技术来确定性能和功率之间的关系。理论结果表明,所得模型满足凸度,从而有效地确定了以下最佳电压/频率工作点:1)在吞吐量约束下使能耗最小或2)在给定的功率预算下使吞吐量最大化。我们在基于FinFET的芯片多处理器上验证我们的模型。考虑到工艺偏差(PV),实验结果表明,在PV值为30%时,我们提出的方法:1)在等性能条件下,能耗降低31.09%; 2)与等偏差相比,在等功率条件下,吞吐量提高了11.46%。不可知的名义情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号