首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Improved Tangent Space-Based Distance Metric for Lithographic Hotspot Classification
【24h】

Improved Tangent Space-Based Distance Metric for Lithographic Hotspot Classification

机译:改进的切线空基距离度量用于光刻热点分类

获取原文
获取原文并翻译 | 示例

摘要

A distance metric of patterns is crucial to hotspot cluster analysis and classification. In this paper, we propose an improved tangent space (ITS)-based distance metric for hotspot cluster analysis and classification. The proposed distance metric is an important extension of the well-developed tangent space method in computer vision. It can handle patterns containing multiple polygons, while the traditional tangent space method can only deal with patterns with a single polygon. It inherits most of the advantages of the traditional tangent space method, e.g., it is easy to compute and is tolerant with small variations or shifts of the shapes. The ITS-based distance metric is a more reliable and accurate metric for hotspot cluster analysis and classification. We also propose a hierarchical density-based clustering method for hotspot clustering. It is more suitable for arbitrary shaped clusters.
机译:模式的距离度量对于热点聚类分析和分类至关重要。在本文中,我们提出了一种改进的基于切线空间(ITS)的距离度量,用于热点聚类分析和分类。拟议的距离度量是计算机视觉中成熟的切线空间方法的重要扩展。它可以处理包含多个多边形的图案,而传统的切线空间方法只能处理单个多边形的图案。它继承了传统切线空间方法的大多数优点,例如,它易于计算,并且在形状的微小变化或偏移方面是可以容忍的。基于ITS的距离度量标准是用于热点聚类分析和分类的更可靠,更准确的度量标准。我们还为热点聚类提出了一种基于层次密度的聚类方法。它更适合于任意形状的群集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号