首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >On Minimizing Analog Variation Errors to Resolve the Scalability Issue of ReRAM-Based Crossbar Accelerators
【24h】

On Minimizing Analog Variation Errors to Resolve the Scalability Issue of ReRAM-Based Crossbar Accelerators

机译:最大限度地减少模拟变化误差解决reram的横杆加速器的可扩展性问题

获取原文
获取原文并翻译 | 示例

摘要

Crossbar accelerators with a resistive random-access memory (ReRAM) are a promising solution for accelerating neural network applications. The advantages of achieving high computation throughput per watt make ReRAM-based crossbar accelerators become a potential solution for accelerating inference operations in the Internet of Things and edge devices. Due to the analog variation errors, the launched ReRAM-based crossbar accelerators can only perform well when each ReRAM cell is used to represent a limited number of data bits. To make such ReRAM-based crossbar accelerators applicable in wide application scenarios, several proposed researches target at binary neural networks and focus on the chip designs in relieving the implementation challenges on computation accuracy for realizing single-bit ReRAM-based crossbar accelerators. Even though several small-sized ReRAM-based crossbar accelerators are announced, the scalability issue hinders ReRAM-based crossbar accelerators from being scaled up. That is, when there are more and more wordline in an ReRAM-based crossbar accelerator, the analog variation error is amplified and thus seriously degrades the computation accuracy. In this work, we propose an adaptive data manipulation strategy to substantially reduce analog variation errors so as to fill up the gap on scaling up the ReRAM-based crossbar accelerators. In particular, a weight-rounding design is proposed to manipulate data to minimize overlapping variation so that the number of wordlines can be scaled up. In addition, an input subcycling design is proposed to further trade tolerable errors with neural networks' execution time. Moreover, a bitline redundant design is proposed to trade acceptable space overhead for eliminating the analog variation errors. The emulation experiments show that the proposed adaptive data manipulation strategy can improve the accuracy in running MNIST and CIFAR-10 by 1.3x and 2.6x with nearly no management penalty and hardware cost. The experimental results also show the close-to-ideal-case accuracy by substantially reducing analog variation errors.
机译:具有电阻随机存取存储器(RERAM)的横杆加速器是用于加速神经网络应用的有希望的解决方案。实现高计算吞吐量的优势使得基于RERAM的横杆加速器成为用于在物联网和边缘设备中加速推理操作的潜在解决方案。由于模拟变化误差,当每个reram小区用于表示有限数量的数据位时,所启动的基于reram的横杆加速器只能执行良好。为了使基于RERAM的横杆加速器适用于广泛的应用方案,在二元神经网络中的几个提出的研究目标,并专注于芯片设计,从而实现了实现基于单位reram的横杆加速器的计算精度的实现挑战。尽管宣布了几种基于小型的跨杆加速器,即使缩放性问题也会阻碍基于reram的横杆加速器缩放。也就是说,当基于reram的横杆加速器中有越来越多的字线时,模拟变化误差被放大,从而严重降低计算精度。在这项工作中,我们提出了一种自适应数据操纵策略,以大大减少模拟变化误差,以填补缩放基于Reram的横杆加速器的差距。特别地,提出了一种体重舍入设计来操纵数据以最小化重叠变化,从而可以缩放字线的数量。此外,提出了输入的子单曲设计,以进一步具有神经网络的执行时间的可贸易误差。此外,提出了位线冗余设计,以贸易可接受的空间开销,以消除模拟变化误差。仿真实验表明,所提出的自适应数据操作策略可以提高运行MNIST和CIFAR-10的准确性1.3倍和2.6倍,几乎没有管理惩罚和硬件成本。实验结果还通过大大减少模拟变异误差来显示近似理想的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号