首页> 外文期刊>Computer architecture news >ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars
【24h】

ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars

机译:ISAAC:在交叉开关中具有原位模拟算法的卷积神经网络加速器

获取原文
获取原文并翻译 | 示例

摘要

A number of recent efforts have attempted to design accelerators for popular machine learning algorithms, such as those involving convolutional and deep neural networks (CNNs and DNNs). These algorithms typically involve a large number of multiply-accumulate (dot-product) operations. A recent project, DaDianNao, adopts a near data processing approach, where a specialized neural functional unit performs all the digital arithmetic operations and receives input weights from adjacent eDRAM banks. This work explores an in-situ processing approach, where memristor crossbar arrays not only store input weights, but are also used to perform dot-product operations in an analog manner. While the use of crossbar memory as an analog dot-product engine is well known, no prior work has designed or characterized a full-fledged accelerator based on crossbars. In particular, our work makes the following contributions: (ⅰ) We design a pipelined architecture, with some crossbars dedicated for each neural network layer, and eDRAM buffers that aggregate data between pipeline stages, (ⅱ) We define new data encoding techniques that are amenable to analog computations and that can reduce the high overheads of analog-to-digital conversion (ADC), (ⅲ) We define the many supporting digital components required in an analog CNN accelerator and carry out a design space exploration to identify the best balance of memristor storage/compute, ADCs, and eDRAM storage on a chip. On a suite of CNN and DNN workloads, the proposed ISAAC architecture yields improvements of 14.8 ×, 5.5 ×, and 7.5 × in throughput, energy, and computational density (respectively), relative to the state-of-the-art DaDianNao architecture.
机译:最近的许多尝试已尝试为流行的机器学习算法设计加速器,例如涉及卷积和深度神经网络(CNN和DNN)的加速器。这些算法通常涉及大量的乘加(点积)运算。最近的项目DaDianNao采用了一种近数据处理方法,其中一个专门的神经功能单元执行所有数字算术运算,并从相邻的eDRAM库接收输入权重。这项工作探索了一种现场处理方法,其中忆阻器交叉开关阵列不仅存储输入权重,还用于以模拟方式执行点积运算。虽然使用横杆存储器作为模拟点积引擎是众所周知的,但是没有任何先验工作设计或表征基于横杆的成熟加速器。特别是,我们的工作做出了以下贡献:(ⅰ)我们设计了流水线架构,其中一些交叉开关专用于每个神经网络层,并且eDRAM缓冲区在流水线级之间聚合数据。适于模拟计算并可以减少模数转换(ADC)的高开销,(ⅲ)我们定义了模拟CNN加速器中所需的许多支持数字组件,并进行了设计空间探索以找出最佳平衡芯片上的忆阻器存储/计算,ADC和eDRAM存储。在一组CNN和DNN工作负载上,相对于最新的DaDianNao架构,拟议的ISAAC架构在吞吐量,能量和计算密度方面分别提高了14.8×,5.5×和7.5×。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号