首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Modular Design and Optimization of Biomedical Applications for Ultralow Power Heterogeneous Platforms
【24h】

Modular Design and Optimization of Biomedical Applications for Ultralow Power Heterogeneous Platforms

机译:超级电力异构平台生物医学应用的模块化设计与优化

获取原文
获取原文并翻译 | 示例
           

摘要

In the last years, remote health monitoring is becoming an essential branch of health care with the rapid development of wearable sensors technology. To meet the demand of new more complex applications and ensuring adequate battery lifetime, wearable sensors have evolved into multicore systems with advanced power-saving capabilities and additional heterogeneous components. In this article, we present an approach that applies optimization and parallelization techniques uncovered by modern ultralow power (ULP) platforms in the SW layers with the goal of improving the mapping and reducing the energy consumption of biomedical applications. Additionally, we investigate the benefit of integrating domain-specific accelerators to further reduce the energy consumption of the most computationally expensive kernels. Using 30-s excerpts of signals from two public databases, we apply the proposed optimization techniques on well-known modules of biomedical benchmarks from the state-of-the-art and two complete applications. We observe speed-ups of 5.17x and energy savings of 41.6% for the multicore implementation using a cluster of 8 cores with respect to single-core wearable sensor designs when processing a standard 12-lead electrocardiogram (ECG) signal analysis. Additionally, we conclude that the minimum workload required to take advantage of parallelization for a heartbeat classifier corresponds to the processing of 3-lead ECG signals, with a speed-up of 2.96x and energy savings of 19.3%. Moreover, we observe additional energy savings of up to 7.75% and 16.8% by applying power management and memory scaling to the multicore implementation of the 3-lead beat classifier and 12-lead ECG analysis, respectively. Finally, by integrating hardware (HW) acceleration we observe overall energy savings of up to 51.3% for the 12-lead ECG analysis.
机译:在过去几年中,远程健康监测正在成为医疗保健的基本分支,随着可穿戴传感器技术的快速发展。为了满足新的更复杂应用的需求,并确保充足的电池寿命,可穿戴传感器已经演变为具有先进的省电功能和额外的异构组件的多芯系统。在本文中,我们提出了一种方法,该方法应用SW层中的现代超级功率(ULP)平台上未覆盖的优化和并行化技术,其目的是改善映射和降低生物医学应用的能耗。此外,我们还调查集成域特定加速器以进一步降低最昂贵的核心核的能量消耗的益处。使用来自两个公共数据库的30-S摘录,我们将所提出的优化技术从最先进的和两个完整的应用程序应用于众所周知的生物医学基准模块。在处理标准12引线心电图(ECG)信号分析时,使用一组8个核心,观察到5.17倍和节能41.6%的节能41.6%,在单芯可穿戴传感器设计时,使用8个核心设计。另外,我们得出结论,利用对心跳分类器的并行化所需的最小工作量对应于3引导ECG信号的处理,加速2.96倍,节能为19.3%。此外,我们通过将电源管理和内存缩放应用于3引导击败分类器和12引导ECG分析的多核实现,观察额外的节能高达7.75%和16.8%。最后,通过集成硬件(HW)加速,我们观察到12引导ECG分析的整体节能高达51.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号