首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Dynamic Memory Bandwidth Allocation for Real-Time GPU-Based SoC Platforms
【24h】

Dynamic Memory Bandwidth Allocation for Real-Time GPU-Based SoC Platforms

机译:基于实时GPU的SoC平台的动态内存带宽分配

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous SoC platforms, comprising both general purpose CPUs and accelerators, such as a GPU, are becoming increasingly attractive for real-time and mixed-criticality systems to cope with the computational demand of data parallel applications. However, contention for access to shared main memory can lead to significant performance degradation on both CPU and GPU. Existing work has shown that memory bandwidth throttling is effective in protecting real-time applications from memory intensive, best-effort (BE) ones; however, due to the inherent pessimism involved in worst-case execution time (WCET) estimation, such approaches can unduly restrict the bandwidth available to BE applications. In this article, we propose a novel memory bandwidth allocation scheme where we dynamically monitor the progress of a real-time application and increase the bandwidth share of BE ones whenever it is safe to do so. Specifically, we demonstrate our approach by protecting a real-time GPU kernel from BE CPU tasks. Based on profiling information, we first build a WCET estimation model for the GPU kernel. Using such model, we then show how to dynamically recompute on-line the maximum memory budget that can be allocated to BE tasks without exceeding the kernel's assigned execution budget. We implement our proposed technique on NVIDIA embedded SoC and demonstrate its effectiveness on a variety of GPU and CPU benchmarks.
机译:包括通用CPU和加速器(例如GPU)的异构SoC平台对于实时和混合关键性系统来应对数据并行应用的计算需求,变得越来越有吸引力。但是,访问共享主存储器的争用可能会导致CPU和GPU上的显着性能下降。现有的工作表明,内存带宽限制有效保护从内存密集,最佳(BE)型的实时应用程序;但是,由于最坏情况执行时间(WCET)估计所涉及的固有悲观主义,这种方法可以过度限制可用于应用的带宽。在本文中,我们提出了一种新的存储器带宽分配方案,在那里我们动态监控实时应用程序的进度,并在安全操作时增加具有的带宽共享。具体而言,我们通过保护来自CPU任务的实时GPU内核来展示我们的方法。基于分析信息,我们首先为GPU内核构建WCET估计模型。使用此类模型,我们将展示如何在线重新编译在线可以分配为任务的最大内存预算,而无需超出内核已分配的执行预算。我们在NVIDIA嵌入式SOC上实施了我们提出的技术,并展示了其对各种GPU和CPU基准的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号