首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >A Lightweight Nonlinear Methodology to Accurately Model Multicore Processor Power
【24h】

A Lightweight Nonlinear Methodology to Accurately Model Multicore Processor Power

机译:一种精确模拟多核处理器电源的轻量级非线性方法

获取原文
获取原文并翻译 | 示例
           

摘要

Many power management algorithms demand accurate and fine-grained runtime estimations of dynamic core power. In the absence of fine-grained power sensors, model-based estimations are needed. Such power models commonly approximate the switching activity of logic gates using performance counters while assuming a linear performance counter/power relation at a fixed frequency and voltage. It has been shown that this relation cannot be captured accurately enough with purely linear models and that well-established nonlinear modeling techniques, e.g., polynomial modeling, easily overfit the underlying performance/power relations. Although neural-network-based modeling has shown to accurately capture nonlinear relations, it has a large training and inference overhead which is too high for fine-grained models on core-level and estimation rates in the range of 1-10 kHz. We propose a methodology for nonlinear transformation of specific performance counters to increase power modeling accuracy at constant frequency and voltage with a relatively low overhead for both model generation and run-time application over a linear model. Furthermore, we use least-angle regression (LARS) to determine a ranking of the performance counter inputs for use in linear and nonlinear modeling and show that the transformed performance counters are better suited for power modeling. The generated dynamic power model consisting of a nonlinear transformation block and a linear regression block reduces relative estimation error on average by 4% and in worst-case scenarios by 7% compared to state-of-the-art fine-grained linear power models. Compared to a state-of-the-art polynomial regression model our proposed approach reduces the relative estimation error by 10% in worst-case scenarios.
机译:许多电源管理算法要求动态核心功率的准确和细粒度的运行时间估计。在没有细粒度的电力传感器的情况下,需要基于模型的估计。这种电力模型通常使用性能计数器近似逻辑门的切换活动,同时假设处于固定频率和电压的线性性能计数器/功率关系。已经表明,通过纯线性模型和纯粹的非线性建模技术,例如多项式建模,易于过度提供潜在的性能/电力关系,不能准确地捕获该关系。尽管基于神经网络的建模已经表明可以精确地捕获非线性关系,但它具有大的训练和推断开销,其对于核心水平的细粒度模型以及1-10 kHz范围内的细粒度模型太高。我们提出了一种用于特定性能计数器的非线性变换的方法,以提高功率建模精度,以恒定的频率和电压,在线性模型中的模型生成和运行时间应用相对低的开销。此外,我们使用最小角度回归(Lars)来确定用于线性和非线性建模的性能计数器输入的排序,并表明变换性能计数器更适合功率建模。与非线性变换块和线性回归块组成的生成动态功率模型平均降低了相对估计误差4%,并且与最先进的微粒线性电源模型相比,在最坏情况下,在最坏情况下,在最坏情况下,通过7%。与最先进的多项式回归模型相比,我们所提出的方法在最坏情况场景中将相对估计误差减少10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号