首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Double MAC on a DSP: Boosting the Performance of Convolutional Neural Networks on FPGAs
【24h】

Double MAC on a DSP: Boosting the Performance of Convolutional Neural Networks on FPGAs

机译:DSP上的双重MAC:提高FPGA上卷积神经网络的性能

获取原文
获取原文并翻译 | 示例

摘要

Deep learning workloads, such as convolutional neural networks (CNNs) are important due to increasingly demanding high-performance hardware acceleration. One distinguishing feature of a deep learning workload is that it is inherently resilient to small numerical errors and thus works very well with low precision hardware. We propose a novel method called double multiply-and-accumulate (MAC) to theoretically double the computation rate of CNN accelerators by packing two MAC operations into one digital signal processing block of off-the-shelf field-programmable gate arrays (FPGAs). We overcame several technical challenges by exploiting the mode of operation in the CNN accelerator. We have validated our method through FPGA synthesis and Verilog simulation, and evaluated our method by applying it to the state-of-the-art CNN accelerator. The double MAC approach used can double the computation throughput of a CNN layer. On the network level (all convolution layers combined), the performance improvement varies depending on the CNN application and FPGA size, from 14% to more than 80% over a highly optimized state-of-the-art accelerator solution, without sacrificing the output quality significantly.
机译:由于越来越苛刻的高性能硬件加速度,深度学习工作负载等卷积神经网络(CNNS)很重要。深度学习工作量的一个区别特征是对小数值误差具有本质上的弹性,因此与低精密硬件非常好。我们提出一种新的方法,通过将两个MAC操作包装到从货架现场可编程门阵列(FPGA)的一个数字信号处理块来理论上是CNN加速器的计算速率,从图解到CNN加速器的计算速率。我们通过利用CNN加速器的操作模式来克服几个技术挑战。我们通过FPGA综合和Verilog仿真验证了我们的方法,并通过将其应用于最先进的CNN加速器来评估我们的方法。使用的双MAC方法可以将CNN层的计算吞吐量加倍。在网络级(所有卷积层组合),性能改善根据CNN应用和FPGA尺寸而变化,从高度优化的最先进的加速器解决方案中的14%到80%,而不会牺牲输出质量显着。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号