首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Post-Silicon Receiver Equalization Metamodeling by Artificial Neural Networks
【24h】

Post-Silicon Receiver Equalization Metamodeling by Artificial Neural Networks

机译:人工神经网络后硅接收器均衡元素

获取原文
获取原文并翻译 | 示例

摘要

As microprocessor design scales to the 10-nm technology and beyond, traditional pre- and post-silicon validation techniques are unsuitable to get a full system functional coverage. Physical complexity and extreme technology process variations severely limits the effectiveness and reliability of presilicon validation techniques. This scenario imposes the need of sophisticated post-silicon validation approaches to consider complex electromagnetic phenomena and large manufacturing fluctuations observed in actual physical platforms. One of the major challenges in electrical validation of high-speed input/output (HSIO) links in modern computer platforms lies in the physical layer (PHY) tuning process, where equalization techniques are used to cancel undesired effects induced by the channels. Current industrial practices for PHY tuning in HSIO links are very time consuming since they require massive laboratory measurements. An alternative is to use machine learning techniques to model the PHY, and then perform equalization using the resultant surrogate model. In this paper, a metamodeling approach based on neural networks is proposed to efficiently simulate the effects of a receiver equalizer PHY tuning settings. We use several design of experiments techniques to find a neural model capable of approximating the real system behavior without requiring a large amount of actual measurements. We evaluate the models performance by comparing with measured responses on a real server HSIO link.
机译:作为微处理器设计尺度到10nm技术,超越,传统的硅验证技术不适合获得完整的系统功能覆盖。物理复杂性和极端技术过程变化严重限制了PresiLICON验证技术的有效性和可靠性。这种情况强加了精致的硅验证方法需要考虑复杂的电磁现象和在实际物理平台中观察到的大型制造波动。现代计算机平台中的高速输入/输出(HSIO)链路电气验证的主要挑战之一在于物理层(PHY)调谐过程,其中均衡技术用于取消通道引起的不期望的效果。由于它们需要大规模的实验室测量,因此HSIO链接中的PHSIO链路的PHSIN调整的当前工业实践非常耗时。替代方案是使用机器学习技术来模拟PHY,然后使用得到的代理模型进行均衡。本文提出了一种基于神经网络的元模型方法,以有效地模拟接收器均衡器PHY调谐设置的效果。我们使用几种实验技术设计来找到一个能够近似真实系统行为的神经模型,而无需大量实际测量。我们通过与Real Server HSIO链路上的测量响应进行比较来评估模型性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号