首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Optimization of Multi-Target Sample Preparation On-Demand With Digital Microfluidic Biochips
【24h】

Optimization of Multi-Target Sample Preparation On-Demand With Digital Microfluidic Biochips

机译:数字微流控生物芯片按需优化多目标样品制备

获取原文
获取原文并翻译 | 示例

摘要

Sample preparation is a fundamental preprocessing step needed in almost all biochemical assays and is conveniently automated on a microfluidic lab-on-chip. In digital microfluidics, it is accomplished by a sequence of droplet-mix-split steps on a biochip. Many real-life applications require a sample with multiple concentration factors (CFs). Existing algorithms, while producing multi-CF targets, attempt to share the mix-split steps in order to reduce reactant-cost and sample-preparation time. However, all prior approaches have two limitations: 1) sharing of intermediate droplets can be best effected only when all required target CFs are known a priori and 2) the processing time may vary depending on the allowable error-tolerance in target-CFs. In this paper, we present a cost-effective solution to multi-CF-dilution on-demand, by using only one (or two) mix-split step(s). In order to service dynamically arriving requests of multiple CFs quickly, we prepare dilutions of the sample with a few CFs in advance (called source-CFs), and fill on-chip reservoirs with these fluids. For minimizing the number of such preprocessed CFs, we present an integer linear programming-based method, an approximation algorithm, and a heuristic algorithm. The proposed methods also allow the users to tradeoff the number of on-chip reservoirs against service time for various applications. Simulation results for several target sets demonstrate the superiority of the proposed techniques over prior art in terms of the number of mix-split steps, waste droplets, and reactant usage when the on-chip reservoirs are preloaded with source-CFs using a customized droplet-streaming engine.
机译:样品制备是几乎所有生化分析所需的基本预处理步骤,可在微流控芯片实验室中方便地实现自动化。在数字微流控中,它是通过生物芯片上一系列液滴混合-分离步骤来完成的。许多现实生活中的应用需要具有多个浓度因子(CF)的样品。现有算法在生成多个CF目标时,尝试共享混合拆分步骤,以减少反应物成本和样品制备时间。但是,所有现有方法都有两个局限性:1)仅在先验地知道所有需要的目标CF时,才能最好地实现中间液滴的共享; 2)处理时间可能会根据目标CF中的允许容错而变化。在本文中,我们仅使用一个(或两个)混合拆分步骤即可提出一种经济高效的按需CF稀释解决方案。为了快速响应多个CF的动态到达请求,我们预先准备了具有几个CF的样品稀释液(称为Source-CF),并用这些流体填充了芯片上的储层。为了最大程度地减少此类预处理CF的数量,我们提出了一种基于整数线性规划的方法,一种近似算法和一种启发式算法。所提出的方法还允许用户针对各种应用在片上存储器的数量与服务时间之间进行权衡。几个目标集的仿真结果表明,当使用自定义的液滴-预先在片上储层中装载源CF时,在混合裂解步骤数,废物液滴和反应物使用方面,所提出的技术优于现有技术。流引擎。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号