首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Real-Time Data Retrieval With Multiple Availability Intervals in CPS Under Freshness Constraints
【24h】

Real-Time Data Retrieval With Multiple Availability Intervals in CPS Under Freshness Constraints

机译:新鲜度约束下CPS中具有多个可用性间隔的实时数据检索

获取原文
获取原文并翻译 | 示例

摘要

Maintaining the temporal validity of real-time data in cyber-physical systems (CPSs) is of critical importance to ensure correct decision making and appropriate system operation. Most existing work on real-time data retrieval assumes that the real-time data under study are always available, and the developed scheduling algorithms mainly focus on making real-time decisions while meeting the temporal validity (freshness) constraints. This assumption, however does not hold in many real-life CPS applications with intermittent data availability, such as in energy harvesting-based sensing systems. In this paper, we study the multi-interval availability-constrained fresh data retrieval (MAFDR) problem, which aims to retrieve all required real-time data on time for a set of decision tasks while taking both the temporal validity and data availability constraints into consideration. We present the formulation of the MAFDR problem and study its complexity under different settings. For the scenario of single decision task with unit-size data retrieval time, we propose a polynomial-time optimal data retrieval algorithm, which comprises a task finish time selection phase and an optimal retrieval schedule construction phase. For the general scenario of multiple decision tasks with nonunit-size data retrieval time, we provide an integer linear programming formulation for the MAFDR problem and propose a fast heuristic algorithm based on max flow. The effectiveness of the proposed algorithms has been validated through extensive experiments by comparing to the optimal solution and the state-of-the-art approach.
机译:保持电子物理系统(CPS)中实时数据的时间有效性对于确保正确的决策和适当的系统操作至关重要。大多数有关实时数据检索的现有工作都假设正在研究的实时数据始终可用,并且开发的调度算法主要着眼于在满足时间有效性(新鲜度)约束的同时做出实时决策。但是,这种假设在具有间歇性数据可用性的许多现实CPS应用中并不适用,例如在基于能量收集的传感系统中。在本文中,我们研究了多间隔可用性受限的新鲜数据检索(MAFDR)问题,该问题旨在按时检索一组决策任务所需的所有实时数据,同时将时间有效性和数据可用性约束都纳入考虑范围考虑。我们提出MAFDR问题的公式,并研究其在不同环境下的复杂性。针对具有单位大小数据检索时间的单决策任务场景,提出了多项式时间最优数据检索算法,该算法包括任务完成时间选择阶段和最优检索调度表构建阶段。对于具有非单位大小数据检索时间的多决策任务的一般情况,我们为MAFDR问题提供了整数线性规划公式,并提出了一种基于最大流的快速启发式算法。通过与最佳解决方案和最新方法进行比较,通过广泛的实验验证了所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号