首页> 外文期刊>IEEE Transactions on Cognitive and Developmental Systems >Domain Adaptation for EEG Emotion Recognition Based on Latent Representation Similarity
【24h】

Domain Adaptation for EEG Emotion Recognition Based on Latent Representation Similarity

机译:基于潜在表示相似性的EEG情绪识别的域改性

获取原文
获取原文并翻译 | 示例

摘要

Emotion recognition has many potential applications in the real world. Among the many emotion recognition methods, electroencephalogram (EEG) shows advantage in reliability and accuracy. However, the individual differences of EEG limit the generalization of emotion classifiers across subjects. Moreover, due to the nonstationary characteristic of EEG, the signals of one subject change over time, which is a challenge to acquire models that could work across sessions. In this article, we propose a novel domain adaptation method to generalize the emotion recognition models across subjects and sessions. We use neural networks to implement the emotion recognition models, which are optimized by minimizing the classification error on the source while making the source and the target similar in their latent representations. Considering the functional differences of the network layers, we use adversarial training to adapt the marginal distributions in the early layers and perform association reinforcement to adapt the conditional distributions in the last layers. In this way, we approximately adapt the joint distributions by simultaneously adapting marginal distributions and conditional distributions. The method is compared with multiple representatives and recent domain adaptation algorithms on benchmark SEED and DEAP for recognizing three and four affective states, respectively. The experimental results show that the proposed method reaches and outperforms the state of the arts.
机译:情感识别在现实世界中具有许多潜在的应用。在许多情感识别方法中,脑电图(EEG)在可靠性和准确性方面都显示出优势。然而,EEG的个体差异限制了跨对象的情感分类器的概括。此外,由于脑电图的非视野特征,一个主题的信号随时间变化,这是一个挑战,可以获得可以在会话上工作的模型。在本文中,我们提出了一种新颖的域适应方法,以概括跨学科和会话的情绪识别模型。我们使用神经网络来实现情绪识别模型,这是通过最小化源上的分类误差在使源和潜在表示中类似的目标的同时进行优化。考虑到网络层的功能差异,我们使用对抗性培训来调整早期层中的边际分布,并执行协会强化,以适应最后一层的条件分布。通过这种方式,我们通过同时调整边缘分布和条件分布,大致适应联合分布。将该方法与基准种子和DEAP上的多个代表和最近的域适配算法进行比较,分别用于识别三和四个情感状态。实验结果表明,该方法达到和优于现有技术。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Res Ctr Brain Inspired Intelligence Beijing 100190 Peoples R China|Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China|Univ Chinese Acad Sci Ningbo Hwa Mei Hosp Ningbo 315010 Peoples R China;

    Chinese Acad Sci Res Ctr Brain Inspired Intelligence Beijing 100190 Peoples R China|Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China;

    Chinese Acad Sci Res Ctr Brain Inspired Intelligence Beijing 100190 Peoples R China|Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China;

    Chinese Acad Sci Res Ctr Brain Inspired Intelligence Beijing 100190 Peoples R China|Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China;

    Chinese Acad Sci Res Ctr Brain Inspired Intelligence Beijing 100190 Peoples R China|Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100190 Peoples R China|Chinese Acad Sci Ctr Excellence Brain Sci & Intelligence Technol Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Electroencephalography; Brain modeling; Emotion recognition; Adaptation models; Training; Feature extraction; Neural networks; Domain adaptation; electroencephalogram (EEG); emotion recognition; neural network; transfer learning;

    机译:脑电图;脑建模;情绪识别;适应模型;培训;特征提取;神经网络;域适应;脑电图(EEG);情绪识别;神经网络;转移学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号