首页> 外文期刊>IEEE Transactions on Circuits and Systems. I, Regular Papers >Approximate identity neural networks for analog synthesis ofnonlinear dynamical systems
【24h】

Approximate identity neural networks for analog synthesis ofnonlinear dynamical systems

机译:非线性动力系统模拟合成的近似身份神经网络

获取原文
获取原文并翻译 | 示例

摘要

Analog computation seems to be not highly versatile when compared with its digital counterpart. This is mainly due to the fact that, with the exception of the linear case, no sufficiently general methods exist at present for the processing of electrical signals using analog systems, nonlinear dynamical systems of the kind described by ordinary differential equations are quite general since they embody a large class of problems. Thus, synthesis of such systems plays a central role in this context. The aim of this paper is to present an approach to the analog synthesis, based on the approximate identity neural networks (a class of neural networks recently proposed). The method is fairly general since it can be applied to a large category of nonlinear systems. Some examples of dynamical systems developed using conventional analog circuitry show the feasibility of the approach and the usefulness for the experimental evidence of many interesting effects such as subharmonic oscillations and chaotic behavior
机译:与数字计算相比,模拟计算似乎没有高度的通用性。这主要是由于以下事实:除线性情况外,目前不存在使用模拟系统处理电信号的足够通用的方法,由常微分方程描述的非线性动力学系统非常通用,因为它们体现出一大类问题。因此,在这种情况下,此类系统的综合起着核心作用。本文的目的是提出一种基于近似身份神经网络(最近提出的一类神经网络)的模拟合成方法。该方法相当通用,因为它可以应用于一大类非线性系统。使用常规模拟电路开发的动力学系统的一些示例显示了该方法的可行性,以及许多次要影响(例如次谐波振荡和混沌行为)的实验证据的有用性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号