首页> 外文期刊>IEEE Transactions on Circuits and Systems. 1 >Hyperacuity in time: a CNN model of a time-coding pathway of sound localization
【24h】

Hyperacuity in time: a CNN model of a time-coding pathway of sound localization

机译:时间超敏:声音定位的时间编码路径的CNN模型

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses a new multilayer one-dimensional (1-D) cellular neural network model of the time-coding pathway of sound localization. The key feature of the model is lateral inhibition, which is supposed to play a crucial role in sound localization. The possible role of this inhibition is examined on the basis of our model and several conclusions are drawn concerning the expected nature of inhibition. It is also shown that by use of inhibition, a group of neurons may be much more sensitive to interaural time difference than one individual neuron. Thus, our model of the first stage of the sound localization system solves a hyperacuity in time problem. The second part of the paper introduces a CNN model of that part of the sound localization system which is characterized by a massive convergence of different frequency channels to resolve the so-called phase ambiguity problem. We show that with inhibition good results can be achieved here too. Quantitative studies show the robustness of the model.
机译:本文讨论了声音定位的时间编码路径的新的多层一维(1-D)细胞神经网络模型。该模型的关键特征是侧向抑制,这在声音定位中起着至关重要的作用。在我们的模型基础上研究了这种抑制作用的可能作用,并就抑制作用的预期性质得出了一些结论。还显示出通过使用抑制,一组神经元对耳间时间差可能比单个神经元敏感得多。因此,我们的声音定位系统第一阶段模型解决了时间过分敏锐的问题。本文的第二部分介绍了声音定位系统那部分的CNN模型,其特征在于不同频道的大量收敛,以解决所谓的相位模糊性问题。我们表明,在抑制作用下,也可以在此处获得良好的结果。定量研究表明该模型的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号