【24h】

Analog Realization of Arbitrary One-Dimensional Maps

机译:任意一维映射的模拟实现

获取原文
获取原文并翻译 | 示例

摘要

An increasing number of applications of a one-dimensional (1-D) map as an information processing element are found in the literature on artificial neural networks, image processing systems, and secure communication systems. In search of an efficient hardware implementation of a 1-D map, we discovered that the bifurcating neuron (BN), which was introduced elsewhere as a mathematical model of a biological neuron under the influence of an external sinusoidal signal, could provide a compact solution. The original work on the BN indicated that its firing time sequence, when it was subject to a sinusoidal driving signal, was related to the sine-circle map, suggesting that the BN can compute the sine-circle map. Despite its rich array of dynamical properties, the mathematical description of the BN is simple enough to lend itself to a compact circuit implementation. In this paper, we generalize the original work and show that the computational power of the BN can be extended to compute an arbitrary 1-D map. Also, we describe two possible circuit models of the BN: the programmable unijunction transistor oscillator neuron, which was introduced in the original work as a circuit model of the BN, and the integrated-circuit relaxation oscillator neuron (IRON), which was developed for more precise modeling of the BN. To demonstrate the computational power of the BN, we use the IRON to generate the bifurcation diagrams of the sine-circle map, the logistic map, as well as the tent map, and then compare them with exact numerical versions. The programming of the BN to compute an arbitrary map can be done simply by changing the waveform of the driving signal, which is given to the BN externally; this feature makes the circuit models of the BN especially useful in the circuit implementation of a network of 1-D maps.
机译:在有关人工神经网络,图像处理系统和安全通信系统的文献中,一维(1-D)映射作为信息处理元素的应用越来越多。在寻找一维映射的有效硬件实现时,我们发现在外部正弦信号的影响下,作为生物神经元数学模型引入的分叉神经元(BN)可以提供紧凑的解决方案。 BN的原始工作表明,其点火时间序列在受到正弦驱动信号作用时与正弦圆图相关,这表明BN可以计算正弦圆图。尽管具有丰富的动态特性,但BN的数学描述非常简单,足以实现紧凑的电路实现。在本文中,我们概括了原始工作,并表明可以扩展BN的计算能力以计算任意一维地图。此外,我们描述了BN的两种可能的电路模型:在最初的工作中作为BN的电路模型引入的可编程单结晶体管振荡器神经元,以及为实现BN的电路而开发的集成电路弛豫振荡器神经元(IRON)。 BN的更精确建模。为了演示BN的计算能力,我们使用IRON生成正弦圆图,对数图和帐篷图的分叉图,然后将它们与精确的数值版本进行比较。简单地通过改变驱动信号的波形就可以对BN进行编程,以计算任意映射,该信号从外部提供给BN。此功能使BN的电路模型在一维地图网络的电路实现中特别有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号