首页> 外文会议>International Conference on High Performance Computing, Data, and Analytics >Mapping Arbitrarily Sparse Two-Body Interactions on One-Dimensional Quantum Circuits
【24h】

Mapping Arbitrarily Sparse Two-Body Interactions on One-Dimensional Quantum Circuits

机译:一维量子电路上的任意稀疏两体相互作用映射

获取原文

摘要

We consider an assignment problem arising in Fermionic-swap based mapping of the one-body and two-body interaction terms in simulating time evolution of a sparse second-quantized electronic structure Hamiltonian on a quantum computer. Relative efficiency of different assignment algorithms depends on the relative costs of performing a swap and computing a Hamiltonian interaction term. Under the assumption that the interaction term cost dominates the computation, we develop an iterative algorithm that uses minimum cost linear assignment (MinLA) and matching for one-body interactions, and hypergraph optimal linear arrangement (HOLA) and partial distance-2 coloring for two-body interactions, to exploit arbitrary sparsity in the Hamiltonian for efficient computation. Using a set of 122 problems from computational chemistry, we demonstrate performance improvements up to 100% relative to the state-of-the-art approach for one-body terms and up to 86% utilization for two-body terms relative to a theoretical peak utilization. To the best of our knowledge, this is the first study to exploit arbitrary sparsity in orbital interactions for efficient computation on one-dimensional qubit connectivity layouts. The proposed algorithms lay a foundation for extension to map general k-body interactions that arise in many domains onto generalized qubit connectivity layouts available in current and future quantum systems.
机译:我们在量子计算机上模拟稀疏的第二量化电子结构哈密顿量的时间演化时,考虑了基于费米子交换的一体和两体相互作用项映射的赋值问题。不同分配算法的相对效率取决于执行交换和计算汉密尔顿交互项的相对成本。在交互项成本占主导地位的假设下,我们开发了一种迭代算法,该算法使用最小成本线性分配(MinLA)和匹配进行单身交互,并对两个对象使用超图最优线性排列(HOLA)和局部距离2着色体相互作用,以利用哈密顿量中的任意稀疏度进行有效计算。通过使用一组来自计算化学的122个问题,我们证明了相对于最新技术的单体项,性能提高了100%,相对于理论峰,两体项的利用率提高了86%利用率。据我们所知,这是第一项利用轨道相互作用中的任意稀疏性进行有效计算的一维量子位连接性布局的研究。所提出的算法奠定了扩展基础,可将在许多领域中出现的一般k体相互作用映射到当前和未来量子系统中可用的广义qubit连接性布局上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号