首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >CNN-Based Hybrid-Order Texture Segregation as Early Vision Processing and Its Implementation on CNN-UM
【24h】

CNN-Based Hybrid-Order Texture Segregation as Early Vision Processing and Its Implementation on CNN-UM

机译:基于CNN的混合顺序纹理分离作为早期视觉处理及其在CNN-UM上的实现

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a biologically inspired, CNN-based, multi-channel, texture boundary detection technique is presented. The proposed approach is similar to human vision system. The algorithm is simple and straightforward such that it can be implemented on the cellular neural networks (CNNs). CNN contains several important advantages, such as efficient real-time processing capability and feasible very large-scale integration (VLSI) implementation. The proposed algorithm also had been widely tested on synthetic texture images. Those texture images are randomly selected from the Brodatz textures database (1966). According to our simulation results, the boundaries of uniform textures can be detected quite successfully. For the nonuniform or nonregular textures, the results also indicate meaningful properties, and the properties also are consistent to the human visual sensation. The proposed algorithm also has been implemented on the CNN universal machine (CNN-UM), and yields similar results as the simulation on the PC. Based on the efficient performance of CNN-UM, the algorithm becomes very fast.
机译:本文提出了一种基于生物学的,基于CNN的多通道纹理边界检测技术。所提出的方法类似于人类视觉系统。该算法简单明了,因此可以在细胞神经网络(CNN)上实现。 CNN包含几个重要的优点,例如高效的实时处理能力和可行的超大规模集成(VLSI)实现。该算法在合成纹理图像上也得到了广泛的测试。这些纹理图像是从Brodatz纹理数据库(1966)中随机选择的。根据我们的仿真结果,可以非常成功地检测出均匀纹理的边界。对于不均匀或不规则的纹理,结果还表明有意义的属性,并且这些属性也与人类的视觉感觉一致。所提出的算法也已经在CNN通用计算机(CNN-UM)上实现,并且产生的结果与PC上的模拟结果相似。基于CNN-UM的高效性能,该算法变得非常快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号