首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Wavelet-Based Multiscale Anisotropic Diffusion With Adaptive Statistical Analysis for Image Restoration
【24h】

Wavelet-Based Multiscale Anisotropic Diffusion With Adaptive Statistical Analysis for Image Restoration

机译:基于小波的多尺度各向异性扩散与自适应统计分析的图像复原

获取原文
获取原文并翻译 | 示例

摘要

The anisotropic diffusion techniques are in general efficient to preserve image edges when they are used to reduce noise. However, they are not very effective to denoise those images that are corrupted by a high level of noise mainly for the lack of a reliable edge-stopping criterion in the partial differential equation (PDE). In this paper, a new algorithm is developed to tackle this problem. The main contribution of this paper is in the construction of a new regularization method for the PDE by using the overcomplete dyadic wavelet transform (DWT). It proposes to perform anisotropic diffusion in the more stationary DWT domain rather than directly in the raw noisy image domain. In the DWT domain, since noise tends to decrease as the scale increases, at each scale, noise has less influence on the PDE than that in the raw noisy image domain. As a result, the edge-stopping criterion and other partial derivative measurements in the PDE become more reliable. Furthermore, there is no need to do Gaussian smoothing or any other smoothing operations. Experiment results show that the proposed algorithm can significantly reduce noise while preserving image edges.
机译:当各向异性扩散技术用于减少噪声时,通常可以有效保留它们的边缘。但是,它们对去噪那些被高水平噪声破坏的图像不是很有效,主要是因为偏微分方程(PDE)中缺少可靠的边缘停止准则。在本文中,开发了一种新的算法来解决这个问题。本文的主要贡献在于使用超完备二进小波变换(DWT)为PDE构建了一种新的正则化方法。它建议在更固定的DWT域中执行各向异性扩散,而不是直接在原始噪声图像域中执行各向异性扩散。在DWT域中,由于噪声倾向于随着比例的增加而降低,因此在每个比例上,噪声对PDE的影响都小于原始噪声图像域中的影响。结果,PDE中的边缘停止准则和其他偏导数测量变得更加可靠。此外,不需要进行高斯平滑或任何其他平滑操作。实验结果表明,该算法在保留图像边缘的同时可以显着降低噪声。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号