首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Complex Independent Component Analysis by Entropy Bound Minimization
【24h】

Complex Independent Component Analysis by Entropy Bound Minimization

机译:熵约束最小化的复杂独立分量分析

获取原文
获取原文并翻译 | 示例

摘要

We first present a new (differential) entropy estimator for complex random variables by approximating the entropy estimate using a numerically computed maximum entropy bound. The associated maximum entropy distributions belong to the class of weighted linear combinations and elliptical distributions, and together, they provide a rich array of bivariate distributions for density matching. Next, we introduce a new complex independent component analysis (ICA) algorithm, complex ICA by entropy-bound minimization (complex ICA-EBM), using this new entropy estimator and a line search optimization procedure. We present simulation results to demonstrate the superior separation performance and computational efficiency of complex ICA-EBM in separation of complex sources that come from a wide range of bivariate distributions.
机译:我们首先通过使用数值计算的最大熵边界来近似熵估计,从而为复杂随机变量提供一个新的(微分)熵估计器。相关的最大熵分布属于加权线性组合和椭圆形分布的类别,并且在一起,它们为密度匹配提供了丰富的双变量分布阵列。接下来,我们将介绍一种新的复杂独立成分分析(ICA)算法,即使用这种新的熵估算器和线搜索优化程序通过熵约束最小化实现复杂ICA(复杂ICA-EBM)。我们目前的仿真结果证明了复杂ICA-EBM在分离来自多种双变量分布的复杂源中的优越分离性能和计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号