首页> 外文期刊>Signal Processing, IEEE Transactions on >Independent Component Analysis by Entropy Bound Minimization
【24h】

Independent Component Analysis by Entropy Bound Minimization

机译:通过熵界最小化进行独立分量分析

获取原文
获取原文并翻译 | 示例

摘要

A novel (differential) entropy estimator is introduced where the maximum entropy bound is used to approximate the entropy given the observations, and is computed using a numerical procedure thus resulting in accurate estimates for the entropy. We show that such an estimator exists for a wide class of measuring functions, and provide a number of design examples to demonstrate its flexible nature. We then derive a novel independent component analysis (ICA) algorithm that uses the entropy estimate thus obtained, ICA by entropy bound minimization (ICA-EBM). The algorithm adopts a line search procedure, and initially uses updates that constrain the demixing matrix to be orthogonal for robust performance. We demonstrate the superior performance of ICA-EBM and its ability to match sources that come from a wide range of distributions using simulated and real-world data.
机译:引入了一种新颖的(微分)熵估计器,其中使用最大熵范围对给定的观测值进行近似,并使用数值程序进行计算,从而得出对熵的准确估计。我们证明了这种估计器可用于多种测量功能,并提供了许多设计示例来证明其灵活性。然后,我们导出一种新颖的独立成分分析(ICA)算法,该算法使用由此获得的熵估计值,即通过熵约束最小化(ICA-EBM)获得的ICA。该算法采用行搜索过程,并且最初使用将解混矩阵约束为正交的更新以实现鲁棒性能。我们展示了ICA-EBM的卓越性能,并具有使用模拟和真实数据来匹配来自广泛分布的来源的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号