首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Unsupervised Single-Channel Separation of Nonstationary Signals Using Gammatone Filterbank and Itakura–Saito Nonnegative Matrix Two-Dimensional Factorizations
【24h】

Unsupervised Single-Channel Separation of Nonstationary Signals Using Gammatone Filterbank and Itakura–Saito Nonnegative Matrix Two-Dimensional Factorizations

机译:使用Gammatone滤波器组和Itakura–Saito非负矩阵二维分解对非平稳信号进行无监督单通道分离

获取原文
获取原文并翻译 | 示例

摘要

A new unsupervised single-channel source separation method is presented. The proposed method does not require training knowledge and the separation system is based on nonuniform time–frequency (TF) analysis and feature extraction. Unlike conventional researches that concentrate on the use of spectrogram or its variants, we develop our separation algorithms using an alternative TF representation based on the gammatone filterbank. In particular, we show that the monaural mixed audio signal is considerably more separable in this nonuniform TF domain. We also provide the analysis of signal separability to verify this finding. In addition, we derive two new algorithms that extend the recently published Itakura–Saito nonnegative matrix factorization to the case of convolutive model for the nonstationary source signals. These formulations are based on the Quasi-EM framework and the multiplicative gradient descent (MGD) rule, respectively. Experimental tests have been conducted which show that the proposed method is efficient in extracting the sources' spectral-temporal features that are characterized by large dynamic range of energy, and thus leading to significant improvement in source separation performance.
机译:提出了一种新的无监督单通道源分离方法。所提出的方法不需要训练知识,并且分离系统基于非均匀时频(TF)分析和特征提取。与专注于使用频谱图或其变体的传统研究不同,我们使用基于伽马通滤波器组的替代TF表示开发分离算法。特别是,我们表明,在此非均匀TF域中,单声道混合音频信号的可分离性要好得多。我们还提供信号可分离性分析,以验证这一发现。此外,我们导出了两种新算法,将最近发布的Itakura–Saito非负矩阵分解扩展到非平稳源信号的卷积模型的情况。这些公式分别基于QuEM-EM框架和乘法梯度下降(MGD)规则。进行的实验测试表明,所提出的方法可有效地提取以大的动态能量范围为特征的源的频谱时域特征,从而导致源分离性能的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号