首页> 外文期刊>Circuits, systems, and signal processing >Single-Channel Signal Separation Using Spectral Basis Correlation with Sparse Nonnegative Tensor Factorization
【24h】

Single-Channel Signal Separation Using Spectral Basis Correlation with Sparse Nonnegative Tensor Factorization

机译:频谱基相关与稀疏非负张量分解的单通道信号分离

获取原文
获取原文并翻译 | 示例

摘要

A novel approach for solving the single-channel signal separation is presented the proposed sparse nonnegative tensor factorization under the framework of maximum a posteriori probability and adaptively fine-tuned using the hierarchical Bayesian approach with a new mixing mixture model. The mixing mixture is an analogy of a stereo signal concept given by one real and the other virtual microphones. An "imitated-stereo" mixture model is thus developed by weighting and time-shifting the original single-channel mixture. This leads to an artificial mixing system of dual channels which gives rise to a new form of spectral basis correlation diversity of the sources. Underlying all factorization algorithms is the principal difficulty in estimating the adequate number of latent components for each signal. This paper addresses these issues by developing a framework for pruning unnecessary components and incorporating a modified multivariate rectified Gaussian prior information into the spectral basis features. The parameters of the imitated-stereo model are estimated via the proposed sparse nonnegative tensor factorization with Itakura-Saito divergence. In addition, the separability conditions of the proposed mixture model are derived and demonstrated that the proposed method can separate real-time captured mixtures. Experimental testing on real audio sources has been conducted to verify the capability of the proposed method.
机译:提出了一种解决单通道信号分离的新方法,提出了一种在最大后验概率框架下提出的稀疏非负张量因子分解方法,并使用分层贝叶斯方法和新的混合混合模型进行自适应微调。混合混合物类似于一个真实的麦克风和其他虚拟的麦克风给出的立体声信号概念。因此,通过对原始单通道混合物进行加权和时移来开发“模拟立体声”混合物模型。这导致了双通道的人工混合系统,从而产生了一种新形式的源频谱基础相关分集。在估计每个信号的潜在分量的足够数量时,所有分解算法的基础都是主要困难。本文通过开发用于修剪不必要组件的框架并将经修正的多元校正高斯先验信息合并到频谱基础特征中来解决这些问题。通过具有Itakura-Saito散度的稀疏非负张量因子分解来估计模拟立体声模型的参数。此外,推导了所提出的混合物模型的可分离性条件,并证明了所提出的方法可以分离实时捕获的混合物。已经对真实音频源进行了实验测试,以验证所提出方法的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号