首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Exponentially Fitted Cubature Kalman Filter With Application to Oscillatory Dynamical Systems
【24h】

Exponentially Fitted Cubature Kalman Filter With Application to Oscillatory Dynamical Systems

机译:带有在振荡动力系统的呈指数级拟合Cucature Kalman滤波器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new nonlinear filtering technique under the Gaussian filtering approach, which is based on the numerical approximation of intractable integrals. The proposition is in the category of spherical-radial rule based Gaussian filtering (dominated by cubature Kalman filter), which is most commonly used in practical applications. The existing Gaussian filters with spherical-radial rule are accurate only for the systems modelled with polynomials of a certain order and suffer from poor estimation accuracy for the oscillatory systems. The proposed method, however, provides an efficient approach for estimation and filtering in oscillatory environment. It introduces an exponentially-fitted spherical-radial rule of numerical approximation, which is accurate for oscillatory functions. The exponentially-fitted spherical-radial rule is composed of a third-degree spherical-cubature rule and an exponentially-fitted Gauss-Laguerre quadrature rule. The proposed filter is named as exponentially-fitted cubature Kalman filter (ECKF). The estimation accuracy of the ECKF is analyzed for nonlinear filtering problems related to the Duffing and Coulomb oscillators in terms of root mean square error (RMSE). The RMSE analysis concludes an improved estimation accuracy for the proposed ECKF compared to the existing Gaussian filters.
机译:本文提出了一种新的高斯滤波方法下的非线性滤波技术,其基于难以切割积分的数值逼近。该命题是在基于球形径向规则的基于球辐射规则的类别(由Cubature Kalman滤波器主导)中,这是最常用于实际应用中的。具有球形径向规则的现有高斯滤波器仅适用于用一定订单的多项式建模的系统准确,并遭受振荡系统的估计精度差。然而,所提出的方法提供了有效的估计和过滤振荡环境的方法。它介绍了一个指数拟合的数值近似的球形径向规则,这对于振荡功能准确。指数拟合的球形径向规则由三度球形级规则和指数拟合的高斯 - Laguerre正交规则组成。所提出的过滤器被命名为指数拟合Cucature Kalman滤波器(ECKF)。分析了ECKF的估计精度,用于在均方根误差(RMSE)方面与Duffing和库仑振荡器相关的非线性滤波问题。 RMSE分析结束了与现有的高斯过滤器相比提出了建议的ECKF的估计准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号