首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >A Neural Network Assistance AMPPT Solar Energy Harvesting System With 89.39% Efficiency and 0.01–0.5% Tracking Errors
【24h】

A Neural Network Assistance AMPPT Solar Energy Harvesting System With 89.39% Efficiency and 0.01–0.5% Tracking Errors

机译:神经网络辅助AMPPT太阳能收集系统,效率为89.39%和0.01-0.5%跟踪误差

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a high-performance solar energy harvesting system with improved adaptive maximum power point tracking (AMPPT) method utilizing neural network (NN) model as assistance. Under the guidance of the negative feedback control (NFC) model, a BJT based voltage control oscillator with three off-chip reconfigurable resistors is designed in this paper to improve the reusability of the solar energy harvesting system. Meanwhile, the AMPPT accuracy has much improvement by co-simulation of MATLAB/Simulink and Virtuoso with the help of NN model of Photovoltaic (PV) Cell. The complete system with output voltage of 4.2V to power the battery is designed and fabricated in 0.18 mu m CMOS technology. According to the test results, the system can track the maximum power points (MPP) successfully with average voltage tracking errors of 0.23% (0.01-0.51%) of PV cell 1 and 0.29% (0.01-0.5%) of PV cell 2 when the light intensity changes from 3000lux to 10000lux. Without power hungry current sensor or voltage sensor and other complicated control circuits, the peak efficiency is about 89.39% @ 3000lux.
机译:本文介绍了一种高性能太阳能收集系统,采用了利用神经网络(NN)模型作为辅助的改进的最大功率点跟踪(AMPPT)方法。在负反馈控制(NFC)模型的指导下,本文设计了一种具有三个片外可重配置电阻的BJT电压控制振荡器,以提高太阳能收集系统的可重用性。同时,借助于光伏(PV)电池的NN模型,通过对Matlab / Simulink和Virtuoso的共模,AMPPT精度有很大改善。在0.18 mu M CMOS技术中设计和制造出电池的输出电压为4.2V的完整系统。根据测试结果,系统可以成功跟踪最大功率点(MPP),平均电压跟踪误差为0.23%(0.01-0.51%)PV电池1和0.29%(0.01-0.5%)的光伏电池2光强度从3000LUX变为10000LUX。如果没有电流饥饿的电流传感器或电压传感器和其他复杂的控制电路,峰值效率约为89.39%@ 3000LUX。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号