首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Deep In-Memory Architectures for Machine Learning–Accuracy Versus Efficiency Trade-Offs
【24h】

Deep In-Memory Architectures for Machine Learning–Accuracy Versus Efficiency Trade-Offs

机译:用于机器学习的深内记忆架构 - 准确性与效率折磨

获取原文
获取原文并翻译 | 示例

摘要

In-memory architectures, in particular, the deep in-memory architecture (DIMA) has emerged as an attractive alternative to the traditional von Neumann (digital) architecture for realizing energy and latency-efficient machine learning systems in silicon. Multiple DIMA integrated circuit (IC) prototypes have demonstrated energy-delay product (EDP) gains of up to $100imes $ over a digital architecture. These EDP gains were achieved minimal or sometimes no loss in decision-making accuracy which is surprising given its intrinsic analog mixed-signal nature. This paper establishes models and methods to understand the fundamental energy-delay and accuracy trade-offs underlying DIMA by: 1) presenting silicon-validated energy, delay, and accuracy models; and 2) employing these to quantify DIMA's decision-level accuracy and to identify the most effective design parameters to maximize its EDP gains at a given level of accuracy. For example, it is shown that: 1) DIMA has the potential to realize between $21imes $ -to- $1365imes $ gains; 2) its energy-per-decision is approximately $10imes $ lower at the same decision-making accuracy under most conditions; 3) its accuracy can always be improved by increasing the input vector dimension and/or by increasing the bitline swing; and 4) unlike the digital architecture, there are quantifiable conditions under which DIMA's accuracy is fundamentally limited due to noise.
机译:特别地,内存架构(迪马)深入的内存架构(DIMA)被出现为传统的VON NEUMANN(Digital)架构的有吸引力的替代方案,用于实现硅中的能量和延迟有效的机器学习系统。多个DIMA集成电路(IC)原型已经证明了最高可达100美元的能量延迟产品(EDP)的增益超过数字架构。这些EDP增益鉴于其内在模拟混合信号性质令人惊讶地实现了最小的或有时不会损失。本文建立了了解DIMA的基本能源延迟和准确性权衡的模型和方法:1)呈现硅验证的能量,延迟和准确性模型; 2)采用这些来量化DIMA的决策准确性,并确定最有效的设计参数,以在给定的准确率水平上最大化其EDP增益。例如,表明:1)DIMA有可能实现21美元之间的潜力 - $ 1365 倍$。 2)其能量决定在大多数条件下的相同决策准确性下降约10美元。 3)通过增加输入矢量维度和/或通过增加位线摆动,始终可以提高其精度。 4)与数字架构不同,有量化的条件,Dima的精度是由于噪音的根本限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号