首页> 外文会议>International Conference on BioSignal Analysis, Processing and Systems >Red Blood Cell Classification: Deep Learning Architecture Versus Support Vector Machine
【24h】

Red Blood Cell Classification: Deep Learning Architecture Versus Support Vector Machine

机译:红细胞分类:深度学习架构与支持向量机

获取原文

摘要

In medical field, the classification of red blood cells (RBCs) are used as an indicator to classify the type of abnormality presence in RBCs. The problem of classifying abnormal cells manually such as achantocyte, sickle cell, elliptocyte, tear drop and normal healthy cell under the microscope tend to give inaccurate result and errors. This paper proposed a method to classify abnormalities based on deformed shaped RBCs image by using SVM and Deep learning in comparison on the RBCs cell Classification. Classifying normal cells of RBCs indicate a healthy patient and Classifying achanthocyte, sickle cell, elliptocyte, teardrop cells indicate presence of disease. And is very important in medical field to detect and classify disease in early stage because it saves and protects human lives. The patients waiting time for blood test is longer because the time taken to generate the result of the blood test is more due to high demand and less equipment. This lead to comparison of the two classifiers in order to predict the one that will best perform on RBCs in order to achieved maximum accuracy for the classification. This study suggested that SVM classifier outperformed deep learning classifier because the SVM can classify the cells in all condition either small or large dataset while deep learning performs mainly on large dataset only.
机译:在医学领域,红细胞(RBC)的分类被用作对RBC中异常存在的类型进行分类的指标。在显微镜下手动分类异常细胞如棘突细胞,镰状细胞,椭圆形细胞,泪滴和正常健康细胞的问题往往会导致结果不准确和错误。提出了一种基于变形的RBC图像的异常分类方法,该方法利用支持向量机和深度学习技术对RBC细胞分类进行比较。对RBC的正常细胞进行分类表明患者是健康患者,对脱落细胞,镰状细胞,椭圆细胞,泪珠细胞进行分类表明存在疾病。早期发现和分类疾病在医学领域非常重要,因为它可以保存和保护人类生命。患者的血液检查等待时间更长,因为产生血液检查结果所花费的时间更多是因为需求量大和设备少。这导致对两个分类器进行比较,以预测最能在RBC上执行的分类器,从而获得最大的分类精度。这项研究表明,SVM分类器优于深度学习分类器,因为SVM可以在所有条件下对小型或大型数据集进行分类,而深度学习仅对大型数据集执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号