首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Novel Radiation Hardening Read/Write Circuits Using Feedback Connections for Spin–Orbit Torque Magnetic Random Access Memory
【24h】

Novel Radiation Hardening Read/Write Circuits Using Feedback Connections for Spin–Orbit Torque Magnetic Random Access Memory

机译:使用反馈连接进行旋转轨道扭矩磁随机存取存储器的新型辐射硬化读/写电路

获取原文
获取原文并翻译 | 示例

摘要

With downscaling of process technology, conventional memories encounter challenges, such as soaring static power, low reliability, and charge sharing effect induced by radiation effects. Magnetic random access memory (MRAM) is considered as an outstanding candidate for addressing these challenges. In particular, emerging spin-orbit torque (SOT) MRAMs have shown ultra-fast switching and read-disturbance immunity compared with spin-transfer torque MRAMs. However, the write operation of the SOT-MRAM is more vulnerable to single-event upsets (SEUs) as its ultra-short write pulse is comparable to the radiation current pulse. In addition, its read circuit can also be disturbed by SEUs or even double-node upsets (DNUs) induced by the charge sharing effect. In this paper, we investigate radiation effects on read/write circuits of the SOT-MRAM. Then, we propose novel radiation hardening designs for SOT-MRAM. The hardening technique is first studied at the write circuit by adding six PMOS transistors as a feedback structure to charge/discharge. Afterwards, we propose a radiation hardening read circuit addressing the issue of SEUs and DNUs, which uses redundant six transistors and two feedback connections as the hardening structure. Based on a physics-based SOT magnetic tunnel junction model and a 65-nm complementary metal-oxide-semiconductor design kit, simulation results indicate that radiation-induced soft errors can be corrected at sensitive nodes. Moreover, the error rate of the proposed read circuit is 40x smaller than the previous work, and restoring time is reduced by 30.6% with negligible area overhead.
机译:随着工艺技术的缩小,传统的记忆遇到挑战,例如辐射效应引起的静态功率,低可靠性和电荷共享效果。磁随机存取存储器(MRAM)被认为是解决这些挑战的优秀候选者。特别地,与自旋转移扭矩MRAM相比,新兴的旋转轨道扭矩(SOT)MRAM显示出超快速的开关和读干扰免疫。然而,由于其超短写脉冲与辐射电流脉冲相当,因此SOT-MRAM的写入操作更容易受到单事件upsets(SEU)。另外,其读取电路也可以受到电荷共享效果引起的SEU甚至双节点upsets(DNU)的干扰。在本文中,我们研究了对SOT-MRAM的读/写电路的辐射效应。然后,我们为SOT-MRAM提出了新的辐射硬化设计。首先通过将六个PMOS晶体管作为反馈结构添加以充电/放电来在写电路中研究硬化技术。之后,我们提出了一种辐射硬化读取电路,用于解决Seus和DNU的问题,其使用冗余的六个晶体管和两个反馈连接作为硬化结构。基于基于物理的SOT磁隧道结模型和65nm互补金属氧化物半导体设计套件,模拟结果表明,可以在敏感节点处校正辐射诱导的软误差。此外,所提出的读取电路的误差率比上一个工作小40倍,并且恢复时间减少了30.6%,区域开销可忽略不计。

著录项

  • 来源
  • 作者单位

    Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Sch Microelect Fert Beijing Res Inst Beijing 100191 Peoples R China|Beihang Univ Sch Elect & Informat Engn Beijing 100191 Peoples R China|Beijing Microelect Technol Inst Beijing 100076 Peoples R China;

    Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Sch Microelect Fert Beijing Res Inst Beijing 100191 Peoples R China;

    Beihang Univ Sch Elect & Informat Engn Fert Beijing Res Inst Beijing 100191 Peoples R China;

    Chinese Acad Sci Inst Microelect Beijing 100076 Peoples R China;

    Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Sch Microelect Fert Beijing Res Inst Beijing 100191 Peoples R China;

    Beijing Microelect Technol Inst Beijing 100076 Peoples R China;

    Beihang Univ Sch Elect & Informat Engn Fert Beijing Res Inst Beijing 100191 Peoples R China;

    Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Sch Microelect Fert Beijing Res Inst Beijing 100191 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    SOT-MRAM; radiation hardening techniques; single event upset; double-node upset; particle; reliability;

    机译:SOT-MRAM;辐射硬化技术;单一事件令人不安;双节点镦粗;粒子;可靠性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号