首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >Hardware-Efficient and Fast Sensing-Time Maximum-Minimum-Eigenvalue-Based Spectrum Sensor for Cognitive Radio Network
【24h】

Hardware-Efficient and Fast Sensing-Time Maximum-Minimum-Eigenvalue-Based Spectrum Sensor for Cognitive Radio Network

机译:基于硬件的快速感知时间最大最小特征值频谱传感器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an implementation-friendly maximum-minimum-eigenvalue (MME)-based spectrum sensing algorithm for cognitive radio network. An iterative power method has been applied for the first time to compute maximum and minimum eigenvalues that reduces the computational complexity of this MME algorithm. We suggest new digital architecture of MME-based spectrum sensor with shorter critical-path delay that lowers its sensing time. This spectrum-sensor architecture has been resource shared to further enhance the hardware efficiency. Performance analysis of the suggested MME algorithm with 1024 input-signal samples delivers adequate performance at -10 dB of SNR with the detection probability of 0.8. Suggested MME algorithm performs better than the energy detection-based spectrum sensing under noise uncertainty. It has detection gain of 5.3 dB compared to the cyclostationary feature detection-based spectrum sensing algorithm at 0.7 detection probability. Hardware prototyping of our MME spectrum sensor has been carried out in FPGA platform and its real-time testing is performed using the communication environment of DVB-T standard. We synthesized and post-layout simulated proposed digital sensor in 90 nm-CMOS process that resulted in 0.42 mm(2) of area, operating at a maximum clock frequency of 404 MHz which results in the sensing time of $53.5mu ext{s}$ . Comparison of our work with literature shows that the suggested MME spectrum-sensor has $2.5imes $ shorter sensing time and lowest area-time-product of 0.023, indicating better hardware-efficiency, than the state-of-the-art implementations.
机译:提出了一种基于实现友好的最大最小特征值(MME)的认知无线电网络频谱感知算法。迭代幂方法已首次应用于计算最大和最小特征值,从而降低了此MME算法的计算复杂性。我们建议基于MME的频谱传感器采用新的数字架构,其关键路径延迟更短,从而缩短了其感应时间。此频谱传感器体系结构已共享资源,以进一步提高硬件效率。建议的MME算法具有1024个输入信号样本的性能分析可在-10 dB SNR时以0.8的检测概率提供足够的性能。建议的MME算法在噪声不确定的情况下比基于能量检测的频谱感知性能更好。与基于循环平稳特征检测的频谱感应算法相比,它的检测增益为5.3 dB,检测概率为0.7。我们的MME频谱传感器的硬件原型已在FPGA平台中进行,其实时测试是使用DVB-T标准的通信环境进行的。我们在90 nm-CMOS工艺中合成并布局了模拟的拟议数字传感器,产生了0.42 mm(2)的面积,以404 MHz的最大时钟频率工作,其感测时间为$ 53.5 mu text {s } $。我们的工作与文献的比较表明,建议的MME频谱传感器的检测时间缩短了2.5倍,而面积时间乘积最低为0.023,这表明其硬件效率比最新的实现方式要好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号