首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Kernel Kalman Filtering With Conditional Embedding and Maximum Correntropy Criterion
【24h】

Kernel Kalman Filtering With Conditional Embedding and Maximum Correntropy Criterion

机译:有条件嵌入和最大熵准则的核卡尔曼滤波

获取原文
获取原文并翻译 | 示例

摘要

The Hilbert space embedding provides a powerful and flexible tool for dealing with the nonlinearity and high-order statistics of random variables in a dynamical system. The kernel Kalman filtering based on the conditional embedding operator (KKF-CEO) shows significant performance improvements over the traditional Kalman filters in the noisy nonlinear time-series prediction. However, KKF-CEO based on the minimum mean-square-error (MMSE) criterion is sensitive to the outliers or heavy-tailed noises. In contrast to the MMSE criterion, the maximum correntropy criterion (MCC) can achieve more robust performance in the presence of outliers. In this paper, we develop a novel kernel Kalman-type filter based on MCC, referred to kernel Kalman filtering with conditional embedding operator and maximum correntropy criterion (KKF-CEO-MCC). The proposed KKF-CEO-MCC can capture higher order statistics of errors and is robust to outliers. In addition, two simplified versions of KKF-CEO-MCC are developed, namely, KKF-CEO-MCC-O and KKF-CEO-MCC-NA. The former is an online approach and the latter is based on Nystr & x00F6;m approximation. Simulations on noisy nonlinear time-series prediction confirm the desirable accuracy and robustness of the new filters.
机译:希尔伯特空间嵌入为动态系统中的随机变量的非线性和高阶统计提供了强大而灵活的工具。基于条件嵌入算子(KKF-CEO)的内核Kalman滤波在嘈杂的非线性时间序列预测中显示出比传统Kalman滤波器显着的性能改进。但是,基于最小均方误差(MMSE)准则的KKF-CEO对异常值或重尾噪声敏感。与MMSE准则相反,在存在异常值的情况下,最大熵准则(MCC)可以实现更强大的性能。在本文中,我们开发了一种基于MCC的新型内核Kalman型滤波器,称为具有条件嵌入算子和最大熵准则的内核Kalman滤波(KKF-CEO-MCC)。拟议的KKF-CEO-MCC可以捕获更高阶的错误统计信息,并且对于异常值具有鲁棒性。另外,开发了KKF-CEO-MCC-O的两个简化版本,即KKF-CEO-MCC-O和KKF-CEO-MCC-NA。前者是一种在线方法,后者基于Nystr&x00F6; m近似值。噪声非线性时间序列预测的仿真证实了新滤波器的理想精度和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号